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CHAPTER I

INTRODUCTION

1.1 General

A new and comprehensive view of Earth is needed to cope with

environmental problems, as well as with difficulties caused by an

expanding population and the depletion of natural resources. Earth

must be viewed in its entirety as problems with the air-ocean-land

system are global in extent. Earth-orbiting satellites, including the

Earth Resources Technology Satellite (ERTS), have been developed which

are able to remotely sense the Earth's features as well as the data

collected by specifically designed data collection platforms (DCP). 1

1.2 The Alabama ERTS Project

The University of Alabama, with the participation of the Geological

Survey of Alabama and the Marshall Space Flight Center, has undertaken

a study of the feasibility of applying remotely sensed data to the

management of natural resources and to the improvement of environmental

quality in Alabama. The accomplishmentnof this purpose will require the

following:

(1) Identification and education of users with regard to the
potential benefits to be derived from space-acquired data.

(2) Timely interpretation and dissemination of beneficial infor-
mation to ultimate users, especially policy makers and regula-
tory agencies.

1
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(3) Analysis of whether or not information from remotely sensed
data results in a significant improvement of the user's
decision-making ability and actions related to management
of natural resources and environmental quality.2

The overall objectives of the Alabama ERTS project are summarized

in outline form in Table I. In addition, Tables II and III show, respec-

tively, areas of application of ERTS data and professional people who

could derive benefits from ERTS data.

Because water is one of the major natural resources and plays an

important role in the development of other resources, particular empha-

sis is given to water resources both as to quantity and quality in the

Alabama ERTS project. 3 Therefore, one of the primary purposes of the

environmental phase of this project is to test the feasibility of using

remotely sensed data in conjunction with ground truth data to monitor,

predict, and manage water quantity and quality in our waterways.

There are several applications for this concept to the monitoring

and management of environmental quality. One application is concerned

with the fast and accurate acquisition of data necessary to meet the

needs of water resource managers, which include both regulatory agencies

and private industries.4 Results from data collection platforms stra-

tegically placed in a water basin, together with satellite imagery, may

be used to characterize environmental factors and provide means to record

changes in environmental quality. In addition, the ERTS data from the

DCP may be employed in monitoring environmental changes with regard to

enforcing state and federal regulations. The collected data may be

stored in an information system which would allow access to specific

2data according to the needs of the user.data according to~the needs of the user.



3

TABLE I

OBJECTIVES OF ALABA'.' ERTS PROJECT3

A. TO DETERlI'IiE THE APPLICABILITY OF REMTELY SENISED DATA

FMfMl ERTS FOR:

(1) LA:ID USE

(2) INVIEITORY ND VA"'AAGEftET OF NATURAL RESOURCES

(3) IlPRO\1EENT OF THE QUALITY OF ENVIRE'IE:T

B. TO DISSEMINATE INFOPRMATION IN FORI'S 'lJST SUITABLE FOR

ULTI'MTE USERS:

(1) PUBLIC POLICY TECHNICIANS

(2) DECISIN FAKERS

(3) PRI\/ATE INDUSTRIES

(4) PRIVATE CITIZENS
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TABLE II

USES OF ERTS DATA3

FLOOD CM'TROL

SOIL STUDIES

RESOURCE INVENTORY

SURFACE '.LATER STUDIES

MINERAL EXPLORATION

GROUND WIATER STUDIES

ZONING

GRCPH TRWSDG

RECREATI CON

MANAG.E¶

PESTICIDE SRlIP·ES

LN'- AND REGIONAL

DISASTER DETECTION

DAMAGE EVALUATION

SEDI[,ENT TRANSPORT

TRAFFIC STUDIES

EROSIMQ CONTROL

IRRIGATION

WATER TEFDERATURE STUDIES

CROP C94DITIUS

SURVEYING A.-D MOPING

AIR QUALITY 'NAGI'ENT

WATER QUALITY t'MAGEfAE"T

PLANNING
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TABLE III

POTENTIAL USERS OF ERTS DATA3

URB&N PLANNERS

REGIOAL PLANNERS

FORESTERS

GEOLOGISTS

ECOLOGISTS

HYDROLOGISTS

AGRWONMISTS

BIOLOGISTS

PHYSICISTS

ASTRMOfERS

CHEMlISTS

AGRICULTURISTS

CIVIL ENGINEERS

CHEiI CAL EJGINEEFPS

AGRICULTURAL ENGINEERS

MINING ENGINEEF

GEOGRAPHER

LIMNOLOGISTS

ENTOMOLOGISTS

ARCHITECTS

ARCHAEOLOGISTS

DEMOGRAPHERS

LANERS

UNIVERSITY FACULTY [FBERS
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In order to monitor a water basin in an effective and optimum

manner, it is necessary that the locations of the data collection plat-

forms be selected such that measurements of water quality parameters at

these locations will be indicative of water quality over the entire

basin. This study is concerned with developing methodology for selec-

tion of these optimum monitoring sites as specifically noted in the

objectives given below.

1.3 Objectives

The objectives of this study were:

(1) to develop the methodology, based upon a systematic investi-
gation, for selection of desirable locations for placing
remote sensing devices (data collection platforms) in a
waterway such that the data collected will be indicative
of the water quality over the entire basin.

(2) to select desirable locations for placing data collection
platforms in a portion of the Black Warrior River basin.

(3) to develop a mathematical model which may be employed to
predict water quality in the Black Warrior basin.



CHAPTER II

MONITORING SYSTEMS

2.1 Conventional Automated
Monitors

Changes in water quality, such as those caused by storms, industrial

spills, and flow changes from impoundments, often occur suddenly and

affect the concentration of many substances of particular interest. For

this reason, continuous monitoring of water quality is advantageous in

situations where these abrupt changes are likely to occur. Because of

the manpower and time requirement involved in standard manual sampling

and analysis, testing in water pollution control work has been moving

more toward instrumentation.

A typical installation utilizing a continuous, automated monitor is

shown in Figure 1. Most automatic monitors have three basic components--

sensor system, analyzer phase, and output phase. The sensing element,

which is the part of the system in contact with the sample, may be either

immersed in the stream or set in flow cells through which the sample is

pumped. Because of advantages in design and maintenance, most systems
v

use the flow cell principle; however, when the sensor is directly in the

stream, the sample is not affected by pumping, temperature changes, or

time of travel through the instrument.

The types of sensors currently available fall into several cate-

gories: (1) electrochemical sensors, (2) sensors based on colorimetric or

7



ELECTRIC POWER SUPPLY L.NEEQU IPMENT SHELTER

MONITOR

IN\ TAfZKE LINE

CASING -

SU3EMESIBLE PUMP.
TsRASK STRAINER
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Conventional Monitoring Installation5Figure 1.
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light-scattering measurements, (3) sensors measuring temperature through

use of a thermocouple, and (4) sensors measuring physical parameters

such as velocity.

The analyzer phase of the monitoring instrument converts the signal

from the sensor into a voltage to apply to the output phase. The analy-

zer may be designed to receive signals from one or more than one sensing

element.

The output phase of the instrument presents the measured value in

the necessary units--pH units, milligrams per liter, micromhos, etc.--

and records it permanently. This component normally has a meter panel

on the face of the instrument to indicate output to the recording

devices.

Where a number of monitoring devices are interconnected to provide

a simultaneous evaluation of water quality in a river system, a tele-

metry system to provide remote handling of the data has almost become a

requirement due to the need for speedy collection and analysis of the

data.6

2.2 Description of ERTS Data
Collection Platforms

The instrumentation used in the ERTS program for monitoring water

quality, while in some respects similar to conventional instrumentation,

embodies some innovative features in its design and construction.

Figure 2 shows a sketch of one of the data collection platforms to

be used in the Alabama ERTS project. Its primary components consist of

the radio transmitter inside the upper housing, the antenna located on

top of the housing, and the sensors, which are included in the lower
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PRIMARY COMPONENTS:

1 - Metal Pole (support)

2 - Sliding Fastener

3 - Housing for Analyzer Unit,
Battery, and Electronic
Unit

4 - Antenna

5 - Connector from Sensor to
Analyzer Unit in Housing

6 - Quick Release Pin

7 - Sensor

7Figure 2. ERTS Data Collection Platform7

Figure 2. ERTS Data Collection Platform7
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extremity of the DCP. The instrumentation of the DCP will be fastened

to a metal pole which has been driven securely into the river bottom.

The fastener will allow vertical movementiof the instrument along the

pole, facilitating its removal for recalibration and other servicing.

The DCP will be submerged except for the antenna and a small portion of

the housing, allowing monitoring at a five-foot depth. Another attrac-

tive feature of the sliding fastener mentioned above is that it will

allow the DCP to float and maintain the five-foot monitoring depth

regardless of changes in the water level.

The DCP will be one of three basic units in the overall data collec-

tion system, the other two being the ERTS satellite and the ground receiv-

ing station. As now planned, the DCP will be activated by a timer

shortly before the satellite is due to pass over in any of several adjac-

ent orbits within a line of sight of the DCP. The DCP will remain opera-

tional until the satellite has passed overhead, after which the instru-

ment will be deactivated. The water quality measurements taken during

this period of operation are immediately beamed to the satellite by

means of a radio transmitter and antenna which are part of the DCP

itself. Computers on board the satellite will correlate this data

received from the DCPs with imagery taken at the same time by sophisti-

cated scanners on board the satellite and transmit the data to the receiv-

ing stations on the ground.7

Two requirements regarding installation of the DCP are that it be

(1) near the shore, where possible damage by contact with river traffic

in the main channel will be minimized, and (2) in a position such that

the line of sight to the satellite may be maintained. This latter
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requirement would exclude areas having high or overhanging cliffs on

either bank of the river.

2.3 Comparison of the ERTS Data
Collection Platforms with
Conventional Automated
Monitors

In describing both the conventional automated monitor and the DCP

to be used in the ERTS program, several advantages of using the DCP

system became apparent. The primary advantage of the DCP is that it

allows immediate correlation of water quality data with imagery taken

from the ERTS satellite, in order that a methodology might be developed

for detecting the occurrence of significant changes in the quality of

water. Another advantage is that this DCP data could be used for develop-

ing means of detecting changes in basin characteristics and the constit-

uents of runoff from the ERTS imagery.

Another attractive feature of the DCP is that after the satellite

comes down there is a possiblity that the DCP could be utilized in the

same manner as the conventional automated monitor.

2.4 Parameters Monitored

In the selection of water quality parameters to be monitored, it is

important to select those which would be of the most benefit to the ulti-

mate users. It was decided that in the Warrior River basin the parame-

ters dissolved oxygen, temperature, pH, and specific conductance would

provide the most beneficial information for the management of basin water

quality.2  Table IV, which lists parameters according to frequency of

usage in state water quality standards, indicates that, with the excep-

tion of conductance, which is used less than 20 percent of the time, the
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TABLE IV.

FREQUENCY OF PARAMETER USAGE IN WATER QUALITY CRITERIA
OF STATE STANDARDS6

Uniform Frequent Infrequent Rare
(100%) (99-50%) (49-20%) (19-0%)

DO

pH

Coliform

Temperature

Floating Solids

(Oil-Grease)

Radioactivity

Public Healtl
Service Drini
ing Water St(

Total Dissol1
Solids

Settleable Solids

Turbidity and/or Color

Taste-Odor

Toxic Substances

k-
ds.

Arsenic

Barium

Cadmium

red Chromium (+6)

Fluoride

Lead

Selenium

Silver

Suspended
Solids

Turbidity

Chloride

Copper

Nitrate

Phenols

Phosphate

Sulfate

Color

Cyanide

Bottom Deposits

Chromium (+3)

Electrical
Conductance

Ammonia

Acidity

Alkalinity

CCE

Hydrogen Sulfide

Pesticides

Sodium

Iron

Plankton

Foaming
Substances

Boron

Manganese

Hardness

BOD

MBAS

Zinc
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selected parameters are those uniformly used in formulating state water

quality criteria. In view of the fact that state regulatory and plan-

ning agencies are anticipated to be one of the principal users of ERTS

water quality data, the choice of these four parameters appears to be

advantageous.



CHAPTER III

SELECTION OF THE WATER BASIN AREA

3.1 Background

The original plans for this study called for the use of ten DCPs in

monitoring the water quality of several river basins on a statewide basis.

Later developments indicated that the number of available DCPs would be

reduced to the five now allotted to this portion of the Alabama ERTS

investigation. Based on this reduction, it was felt that the investiga-

tion should be confined to a single river basin to avoid a thin coverage

of a multiple basin area, where the data collected would be from rela-

tively isolated and unrelated points. Also, simultaneous evaluation of

water quality with ERTS imagery over a large geographical area would be

less significant than that produced for a smaller and more extensively

monitored area.8

3.2 River Basin Selected
for Investigation

The sector of the Black Warrior River from river mile 385.0 to river

mile 335.0 was chosen for evaluation in testing the utility of the DCP

concept for monitoring water quality. Shown in Figure 3, this stretch

of the river extends from the confluence of the Locust and Mulberry forks

downstream to a point approximately three miles below Oliver Lock and

Dam. These limits were selected, in part, because they cover all sig-

nificant pollutional effluents received by the Black Warrior River from

15



16

Lewis M. Smith

Forest Land

North Ri%

Bankhead

Holt

Oliver

I--, Birmingham

N
A

Warrior

The Black Warrior River BasinFigure 3.
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the highly industrialized area in the vicinity of Tuscaloosa. Another

unique factor concerning this sector is that the relative quality of the

water both upstream and downstream of these limits is good while portions

of the area considered are grossly polluted, especially during the low

flow periods occurring in the summer months.

The reasons for choosing the Warrior River Basin for the study are

summarized as follows:

(1) overall convenience of the basin in regard to data collection

and maintenance of DCPs to the primary investigating groups

at The University of Alabama, the Geological Survey of Ala-

bama, and Marshall Space Flight Center.

(2) relatively unrestricted use of the river as a receiving body

for disposal of sewage and industrial wastes.

(3) location on the river of several major industries, such as

chemical, petrochemical, iron products, coking, pulp and

paper, and asphalt operations, which discharge wastewaters

with varied constitutents.

(4) location of several dams and hydroelectric power generation

facilities at Bankhead, Holt, and Oliver, which would allow

the investigation of their effects on the quality of water in

an impoundment.

(5) presence of both stratified and unstratified conditions in

the reservoirs, primarily due to the deep, slow-moving waters

in Bankhead and Holt pools and the shallow, swifter waters in

Oliver and Warrior pools.
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(6) presence of both relatively unpolluted waters, such as

Bankhead Pool, and grossly polluted areas, allowing com-

parative modeling techniques f6r various degrees of water

quality.

(7) potential for additional investigations, such as evaluating

the moderating effect of a clean stream (Mulberry Fork) join-

ing a relatively polluted stream (Locust Fork).

The above reasons for selecting the Black Warrior River point out

the numerous advantages inherent in selection of this area for investiga-

tion during this part of the environmental phase of the Alabama ERTS

project.



CHAPTER IV

REVIEW OF LITERATURE

Since the ERTS remote-sensing concept involving correlations of

imagery taken from the satellite with water quality data obtained by the

DCPs is new and unprecedented, reliance must be placed on previously

reported methods for selection of DCP locations and for the development

of stream quality models.

4.1 Dissolved Oxygen Models for
Flowing Streams and Impoundments

The first dissolved oxygen model for predicting oxygen balance in

a flowing stream was developed by Streeter and Phelps9 in 1925. The

formulas, which are based upon two velocity constants, describe the oxy-

gen balance in a stream as a function of distance (or time) from a waste

load discharge point. These two parameters are kl, the deoxygenation

velocity constant, and k2, the reaeration velocity constant. These con-

stants describe the activity in the stream in an all-encompassing fash-

ion, with the effects of several known interacting factors such as

photosynthesis and bottom deposits considered as being included in the

kl and k2 values.

Other investigators have proposed models which differ somewhat, but

all employ the original Streeter-Phelps formulation as the basis of their

work. Goodman 10 was one of these subsequent investigators who developed

a mathematical model to apply to flowing streams containing no reservoirs

and not influenced by estuaries. This particular effort toward water

19
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quality modeling was based on modifications of the original Streeter-

Phelps equation and considered dissolved oxygen concentration as the

principal criterion of stream quality. These equations determining

changes in BOD and DO require input values for deoxygenation and reaera-

tion velocity constants, settling out of BOD to bottom deposits, resus-

pension of BOD from bottom deposits, and oxygenation by photosynthetic

processes.

More recent work involving modeling of flowing streams has been

reported by the Texas Water Development Board. The result of this work

was the development of a computer program called QUAL-11 1 that is capable

of producing a time history and spatial distribution of not only BOD and

DO but also temperature and as many as three minerals. This is accom-

plished within the framework of a completely-mixed, branching stream or

canal system with multiple waste inputs and withdrawals. In addition,

this agency has developed the DOSAG-I1 2 program, which is used to simu-

late the spatial and temporal variations in BOD and DO under various

conditions of temperature and headwater flow.

One of the more useful recent studies done on the subject of model-

ing dissolved oxygen was conducted by Pyatt,1 3 who developed equations

for predicting organic matter and DO deficit not only for a free-flowing

stream but also for an impounded waterway. These formulations are based

on the original Streeter-Phelps equations with added "error" terms to

account for the usually omitted factors such as bottom deposits and

photosynthesis which affect the deoxygenation and reaeration rates in a

stream environment.

The modeling of the reservoir-type situation is particularly note-

worthy since relatively few investigators have even attempted such a
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study. Due to the lack of previous knowledge in this particular area,

complete mixing was assumed for the reservoirs, although this is not

actually the case in most impoundments.

Churchill and Nicholas 14 also investigated the changes occurring in

the quality of water during its passage through Tennessee River reser-

voirs and during long storage in impoundments. However, these studies

were primarily observations in which no attempt was made toward develop-

ing generalized equations for predicting changes in impoundments.

4.2 Water Quality Monitoring
Systems

Quite a number of investigating groups have undertaken to set up

systems to monitor and control water pollution. Describing all of these

in detail would be a formidable task; therefore, only the ones considered

applicable to this study are reviewed.

McCormack and Perlis15 developed a method of optimizing the number

and locations of measurement stations needed for a particular monitoring

program. In developing this procedure they applied theories of system

optimization to a polluted stream model in which the primary dependent

variable was dissolved oxygen. The stream models were subject to random

variations and environmental changes. Measurement error was a function

of the number and position of the measurements, the sample size, and the

time between measurements. The developed policy minimized an integral-

type function involving mean square error and actual measurement cost.

Other studies, which may not be directly concerned with optimizing

locations of monitors, are strongly related to the use of water quality

data in water resources management and therefore pertinent to the entire

ERTS project. A Harvard research team 16 on the Lehigh River was the

C,
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first group to conduct regional water resource management studies using

systems analysis techniques. In recent years, both federal agencies and

universities have used systems analysis on river basins, including water

quality studies on both the Columbia and the Delaware river systems.

Another group to enter this field of basin management was the Ohio

River Valley Water Sanitation Commission (ORSANCO)1 7 which in 1960 built

an automatic field monitor and a central receiving station to aid in

management of water quality in the river basin. Later, more field moni-

tors and data processing facilities were added to make up the integrated

system now in operation.

Testerman1 8 reported on a system for recording and transmitting

digital data at a remote water quality monitoring station that is unat-

tended. Signals from transducers, which measure water quality charac-

teristics, are converted to digital signals and recorded on magnetic

tape. This unit can be contacted from a central unit for playback of

the day's recording with the transmitted data being recorded by teletype

at the central station. The techniques developed in this study hold

promise for making water quality measurements in remote areas and at

numerous sites and reporting to one central station.

The United States Army Corps of Engineers6 has also conducted an

interesting study involving the control of impoundments to augment flow

based on information reported by a monitoring station concerning dilution

requirements.



CHAPTER V

DEVELOPMENT OF THE MODEL

5.1 General

The steps outlined in this chapter were undertaken to develop a

technique which would ultimately lead to the selection of the desirable

sites for placing the ERTS data collection platforms. It was intended

that the methodology developed in this study would find general applica-

tion for the placement of remotely-sensed monitoring stations.

Since dissolved oxygen is normally considered to be the most impor-

tant parameter in defining water quality, it was decided that the pro-

cedure for selecting DCP monitoring sites would be oriented toward locat-

ing the critical dissolved oxygen concentrations in the river basin.

For this reason, the modeling technique considered in this study was

centered around simulating the dissolved oxygen concentrations normally

found in the river.

While dissolved oxygen is considered to be the principal parameter

of interest, the additional parameters of pH, temperature, and conduc-

tivity are also to be monitored. Factorssuch as mine drainage and run-

off from agricultural lands, which would affect these latter three

parameters, were also considered in developing the methodology for

selecting the monitoring sites.

23
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In deciding to select locations of monitoring sites based on the

most sensitive points for dissolved oxygen, it was felt that the major

effects on the other three parameters could also be detected at these

same locations. The opposite of this, that is, selecting locations

based primarily on monitoring pH, temperature, and conductivity would

not necessarily produce locations of meaningful dissolved oxygen con-

centrations. The reasoning here was that while dissolved oxygen content

is very much dependent on time (and therefore distance), factors that

would be indicative of changes in pH, temperature, and conductivity,

such as dissolved solids content, are largely independent of time of

flow, depending instead on the amount of dilution received.

For the reasons discussed above, the technique developed in this

study does not simulate pH, temperature, or conductivity, but it does

include the capability of receiving inputs for factors affecting these

parameters should it become desirable to include these values in model-

ing studies.

5.2 Factors Affecting Oxygen
Balance in Streams

The factors responsible for the occurrence of oxygen variations in

streams as well as for the magnitudes of these variations are listed by

Goodman1 0 as: (1) deoxygenation, (2) reaeration, (3) algal activity,

(4) benthal demand, (5) settling and resuspension of BOD, (6) temperature,

(7) streamflow, and (8) sunlight. The factors which serve to effect a

decrease in dissolved oxygen concentration are deoxygenation due to

oxidation of organic matter, benthal demand (bottom deposits), resuspen-

sion of organic matter having an oxygen demand, an increase in tempera-

ture of the water, and a decrease in streamflow. Conversely, those
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factors which would contribute toward an increase in the dissolved oxygen

are reaeration, the photosynthetic activity of algae in combination with

sunlight, settling of organic matter having an oxygen demand, a decrease

in temperature, and the diluting effect of an increase in streamflow.

In Figure 4 a diagram is presented depicting activities which would exert

some measure of influence on the BOD and DO systems of the total river

environment.

5.3 Streeter-Phelps Equation

The first attempt to mathematically relate the factors affecting

the oxygen balance in a natural stream was performed in 1925 by Streeter

and Phelps.9 These investigators combined all the factors adversely

affecting dissolved oxygen into a basic deoxygenation equation, while

those factors contributing to an increase in dissolved oxygen were com-

bined into a basic reaeration equation. These two equations are shown

below in both their differential and their integrated forms.

dL
d = -klL (1)

L(t) = La(e-klt) (la)

dD
dt = -k2D (2)

D(t) = Da(e-k2t) (2a)

In the above equations L(t) and D(t) are, respectively, the concen-

tration of organic matter remaining at time t and the dissolved oxygen

deficit at time t. The terms La and Da are, respectively, the concentra-

tion of organic matter and the dissolved oxygen deficit at t = 0, while
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k 1 and k2 are, respectively, the overall deoxygenation and reaeration

rate constants.

Equations (la) and (2a) were combined to give the well-known dis-

solved oxygen sag equation shown below in Equation (3).

D(t) = klLa (e-klt -e-k2t) + Da(e-k2t) (3)

This equation, developed for the case of a free-flowing, non-impounded

stream, has remained the basis of nearly all water quality research

related to dissolved oxygen.

5.4 Modifications of the Original
Streeter-Phelps Equation by
Pyatt

While the original dissolved oxygen sag equation developed by

Streeter and Phelps has remained largely unchanged, some investigators

13such as Pyatt 3 have attempted to make refinements, particularly in the

area of altering the rate constants to account for factors such as photo-

synthesis and bottom deposits in some manner other than grossly combin-

ing them all together in the ki and k2 rate constants.

Pyatt has proposed accounting for the additional factors in the

form of certain "error" terms. He has added a factor r, the deoxygena-

tion error term, to the general deoxygenation equation to obtain:

dL _ _klL + r (4)
dt1

which, when properly integrated, gives:

L(t) = (La - r ) e-klt + r (5)
kl kl
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Similarly, Pyatt has added a factor s, called the reoxygenation error

term, to the dissolved oxygen sag equation to obtain:

dD
dt klL - k2D +s (6)

which, when integrated gives:

D(t) La r (e-klt -e-k2t)
k2-kl k2- k l

+ 1 (r+s)(l-e-k2t) + Da e-k2t (7)
k2

The error terms r and s are usually set equal to 0.005. All other

variables in Equations (4) through (7) are as previously defined.

One drawback to the use of Equations (5) and (7) is that they are

limited to use with a flowing stream. Recognizing this limitation, as

well as the fact that most streams are now regulated to some extent,

Pyatt sought to develop equations for the concentration of organic mat-

ter and the DO deficit in an impoundment. His efforts resulted in the

following equations:

-t ZLin (1-e-A t)

L(t) = Lo eAt + A (l-eAt) (8)

D(t) = ZDn k ( ZL -Bt
D(t) B + A-B ( L  B

L in) e-At klLin

+ -(L +Z (DinA + ) (9)
~A

where the variables are defined as follows:

Lo = concentration of organic matter in the reservoir before the
input of waste flow from upstream
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Do = dissolved oxygen deficit in the reservoir before the input
of waste flow from upstream

Lin = incoming concentration of organic matter

Din = incoming dissolved oxygen deficit

W = outflow volume

Z = inflow volume

k3 = deoxygenation rate constant for sludge deposits on bottom
of reservoir

A = kl + k3 + W

B = k2 + W

One limitation of Equations (8) and (9) is that complete mixing in

the reservoir must be assumed, although this is often not the actual

case. Even with this built-in source of error, which would probably

cause predicted values of dissolved oxygen concentrations to be slightly

lower than those actually found, these equations have been found to be

particularly useful in simulating the dissolved oxygen profile of a

stream. Pyatt utilized these equations in simulating the DO profile in

an actual river basin containing impoundments, showing that the formulae

developed in his study do provide accurate results.

5.5 Application of Formulas
to Warrior River

When considering the stretch of the Warrior River with which this

phase of the Alabama ERTS project is concerned, it became apparent that

no single equation can be applied over the entire run of the river from

the confluence of the Locust and Mulberry forks to several miles below

Oliver Lock and Dam.

This area of the rivers which includes all of the Holt and Oliver

pools and portions of the Bankhead and Warrior pools, is, in the
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strictest sense, impounded over its entire length, suggesting that

Equations (8) and (9), developed for use with impoundments, should be

used for this entire stretch of the river. This would certainly hold

true for the Bankhead and Holt pools, which, in addition to containing

the deep, slow-moving waters characteristic of impounded streams, are

also regulated entirely by the release of water from Bankhead and Holt

dams. However, in the case of Oliver Pool and the portion of the Warrior

Pool included in this study, the waters are shallower and faster-moving

than in Holt and Bankhead pools upstream. Another factor to be con-

sidered is that Oliver Dam is a free-flow dam with the water flowing

over the crest. As a result, these waters are subjected to much less

regulation than that found at Bankhead andsHolt dams, which are not of

the free-flow type.

For the reasons enumerated above, it was felt that Bankhead and

Holt pools are impoundments requiring the use of Equations (8) and (9)

for dissolved oxygen simulation. However, the Oliver and Warrior pools,

though technically impoundments, more nearly approach the conditions of

a flowing stream, and warrant the use of Equations (5) and (7) which

were developed for free-flowing conditions.

It should be emphasized that this step is of paramount importance,

requiring careful consideration of the stream under investigation before

selecting the appropriate equations for use in simulating the dissolved

oxygen profile.

5.6 Reach Concept Applied
to the Model

Due to an absence of industries and other such inputs along the

impoundments modeled by Pyatt, each of the impounded areas was considered
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as one reach or segment having no subdivisions. This approach lacked

sufficient detail to model a complex basin such as the Warrior; however,

the modeling equations developed by Pyatt can be applied to the Warrior

River by subdividing each impoundment into smaller reaches that are

capable of describing additional inputs.

This concept essentially involves separating the entire length of

the river under consideration into a number of smaller reaches, such

that each reach contains only one input, if any, and also to insure that

the physical characteristics of the river remain the same throughout

each individual reach.

In order to follow the above guidelines, a new reach is begun when-

ever one of the following events or structures is encountered:

(1) entrance of a major tributary

(2) the discharge of an industry or a domestic treatment facility

(3) an industrial withdrawal

(4) a dam or other flow-controlling structure.

The first three categories are necessary in order to reflect changes

in the quality of water downstream that result from the input of a major

tributary or an industrial discharge or withdrawal. The fourth category

is necessary due to the nonavailability of a technique for predicting the

dissolved oxygen and organic matter below a dam based on the values of

these same variables above the dam. A regression method was employed in

this study using observed values of organic matter and dissolved oxygen

both above and below the dams; however, the correlation coefficient was

too small to warrant placing much confidence in the calculated line of

best fit through the data. As a result, the alternative is that a new
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reach be created at each dam, with observed values of organic matter and

dissolved oxygen input into the model below each dam.

This inability to simulate the effect of a dam requires that the

model developed herein re-start the simulation process at the upstream

end of each impoundment, leaving a gap in the simulated profile at each

of the dams along the river.

5.7 Necessary Input for
Each Type of Reach

The four criteria outlined in Section 5.6 for designating a new

reach result in seven different types of reaches that might be encoun-

tered, with the following distinguishing characteristics:

(1) SD--Stream Discharging into the river in a polluted condition

(2) SDH--Stream Discharging into the river and containing High-

quality water

(3) R--Restriction to flow, such as a dam or other flow-control-
ling structure (this reach is normally given a length of

0.6 mile)

(4) N--No input (reach occurs immediately below a dam and is
designated as a new reach so that BOD and DO values may be
input at downstream end of type R reach)

(5) ID--Industry Discharging into the river (sewage treatment
facilities also placed in this category)

(6) IW--Industry Withdrawing water from the river

(7) IWC--Industry Withdrawing water from the river very Close to
the discharge point (this reach given a length of zero yet

still designated as a new reach in order to remain separated
from the discharge)

Due to the differing characteristics of the input to each of the

reaches (withdrawal is considered as a negative input), each type of

reach will require that different data be input to the model in order

that the effect of that input might be properly evaluated. Table V
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consists of a summary of the data that would be needed to sufficiently

characterize the input for each of the seven types of reaches.

5.8 Division of Warrior
River into Reaches

Following the outline set forth in the previous sections for the

establishment of new reaches, the section of the Warrior River from river

mile 385.0 to river mile 335.0 was segmented into 25 different reaches

to be considered in simulating the dissolved oxygen profile of the river.

Table VI contains a listing of these 25 reaches as well as upstream and

downstream boundaries and the major input for each reach.

The actual river mile locations for these reaches were obtained

from navigation charts of the Warrior River published by the Corps of

Engineers.2 0 It should be pointed out that the numbering convention used

with the simulation technique employed in this study involves numbering

reaches at the upstream end of the stretch under consideration and

proceeding downstream.

Another convention adopted in this study is, where possible, to

subdivide the river such that the type R reaches begin 0.5 mile above

the dam and end 0.1 mile below the dam. The reasoning here is that

those conditions which would set apart the waters around a dam from

waters in other sections of the river are: (1) large bottom deposits

in the forebay, extending perhaps as far as 0.5 mile above the dam, and

(2) swift tailrace currents, whose velocities might be maintained for

a distance of 0.1 mile below the dam.

In some instances, however, the above policy cannot be kept. Such

is the case around Oliver Lock and Dam, where to extend the reach 0.5

mile above the dam would include the discharge from the Northport sewage
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TABLE VI

REACHES OF THE WARRIOR RIVER USED IN
SIMULATION OF DISSOLVED OXYGEN

Upstream Downstream
Reach R. M. R. M. Input

1A 385.00 382.00 Locust & Mulberry Forks
2A 382.00 367.50 Valley Creek
3A 367.50 366.00 Yellow Creek
4A 366.00 365.40 Bankhead Lock;& Dam
5A 365.40 361.50 None
6A 361.50 347.50 Davis Creek
7A 347.50 346.90 Holt Lock & Dam
8A 346.90 346.30 None
9A 346.30 345.70 Hurricane Creek

10A 345.70 345.70 Reichhold Chemical Co. Intake
10B 345.70 345.20 Reichhold Discharge
10C 345.20 344.40 A. B. C. Discharge
11A 344.40 344.40 Intake for Warrior Asphalt Co.

& Empire Coke Co.
llB 344.40 344.39 Warrior Asphalt Discharge
11C 344.39 343.70 Empire Coke Co. Discharge
12A 343.70 343.50 North River
13A 343.50 343.00 Central Foundry Discharge
14A 343.00 342.50 Gulf States Intake
15A 342.50 341.60 Gulf States Discharge
16A 341.60 338.41 Tuscaloosa WTP Discharge
17A 338.41 338.39 Northport STP Discharge
18A 338.39 338.10 Oliver Lock and Dam
19A 338.10 337.00 None
20A 337.00 336.70 Hunt Oil Co. Intake
21A 336.70 335.00 Hunt Oil Discharge
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treatment plant, in which case the requirement specifying only one input

for each reach could not be met. To circumvent this problem, the treat-

ment plant effluent was included in a reach of length 0.02 mile and the

reach containing the dam was restructured so as to extend 0.3 mile above

the dam and 0.1 mile below the dam. This solution provided that each of

the two reaches would contain only one input.

5.9 Additional Equations Used

In developing a method for simulating the dissolved oxygen profile

of a stream, the most important equations are those which actually pre-

dict the concentration of organic matter and the dissolved oxygen

deficit. However, there are quite a number of other formulae utilized

in providing input values to the final equations. These supporting

equations are briefly described in the following sections.

5.9.1 Velocity Rate Constants

The three rate constants are comprised of the biodegradation coef-

ficients k 1 and k3 and the reaeration coefficient k2. Commonly, the

value of kl, the constant pertaining to deoxygenation of suspended

organic matter, is obtained as the slope of a semilog plot of organic

matter remaining versus time. However, in quite a few instances during

this study, when any BOD measurements at all had been taken, they usually

consisted only of BOD5 and BOD2 0 (La). In such cases the value of k

(base 10) was found by utilizing Equation (10):

BOD(t) = La (1-1 0
-klt) (10)

which could be modified to the form of Equation (11).
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kl = - I1 log (1 BOD(t))k, = -(11)
t La

In those cases where no BOD measurements had been taken by some of the

industries, the author was forced to rely on some typical k1 values

given by Eckenfelder21 for certain types of industrial wastes.

According to Pyatt1 3 the value of f3, s de~oZenation rate con-

stant for bottom deposits in reservoirs, can be safely assumed to equal

0.005.

Quite a few empirical formulas have been developed for calculating

k2, the reaeration coefficient. Most are of the general form:

cvm

k2 = d- (12)

Where V is the mean velocity, d is the mean depth, and C, m, and n are

coefficients varying according to the use of each investigator.

The particular formula providing best results with a certain stream

varies according to the characteristics peculiar to that stream. Results

obtained in this study indicated that the equation developed by O'Connor

and Dobbins2 2:

12.90v 0 5

k2  - 5 (13)
dl 5

provided the most accurate values for k2 in the Warrior River.

5.9.2 Corrections for
Temperature

All of the above methods for calculating the velocity rate con-

stants result in values accurate only at a temperature of 20 °C and,
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consequently, these values must be adjusted to the temperature of the

water:

kl(T) = ki(20) 1.047 T2 (14)

k2(T) = k2(2, C. 0159  T-20 (15)

k3(T) = k3(20) L.047] T-20 (16)

In addition, the value of the ultimate BOD (La) must be corrected

to the proper temperature:

La(T) = La(2 0) .02T + 0.6] (17)

In each case, Equations (14) through (17) represent the commonly

used methods of correcting that particular parameter for temperature.12

5.9.3 Dissolved Oxygen Saturation

In order to determine the dissolved oxygen deficit in each reach

of the river, it was necessary to know the saturation concentration of

dissolved oxygen for the water in the main stream of the river as well

as in the inputs of various tributaries and industrial wastes.

Quite a few references contain tables showing the saturation values

of DO at various temperatures; however, in a simulation technique, the

saturation values are needed in an equation form which is more easily

adaptable to computer programming. The particular empirical formula

employed in this investigation for calculating the saturation concen-

tration of dissolved oxygen in water at a certain temperature was
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developed by TVA2 3 and is shown below:

D0sat = 14.65 - 0.41 T + 0.008 T2 - 0.00008 T3. (18)

5.9.4 Corrections for
Changes in Flow

As each new reach is encountered and the particular input for that

reach is added to the flow from the reach immediately upstream, it was

necessary to correct values of kl, dissolved oxygen deficit, and con-

centration of organic matter for the mixed flow. The dilution method

is employed in each case:

kl Qup + kl Qin

Qup + Qin (19)

D D Qup + D Qin (20)

Qup + Qin

La La Qup + La Qin (21)

Qup + Qin

where Qup is the flow leaving the reach immediately upstream and Qin

is the additional flow entering at the head of the particular reach

under consideration.



CHAPTER VI

COLLECTION OF DATA

6.1 General

As previously stated, the primary purpose of this investigation

was to locate the optimum monitoring sites for DCPs based upon critical

dissolved oxygen concentration levels. The most promising technique to

be employed for meeting this objective appeared to be a simulation of

the dissolved oxygen profile of the river. It became evident that the

period of the year which would present the lowest, and therefore most

critical, values for dissolved oxygen would be the summer months of June

through September, when the volume of flow is lowest and the temperature

of the water is highest. It also appeared logical that the simulation

technique and subsequent selection of DCP sites should be based upon the

critical monthly average values for dissolved oxygen rather than upon

critical daily values, since the monthly values are less subject to

variations with respect to location that would normally be encountered

with daily values. In addition, the data collected was obtained during

the months of the previous summer, in order to assure that the data

reflected any recent developments which might cause changes in the water

quality of the river.

The nature of a study of this type requires the acquisition of large

amounts of data for many parameters in order to characterize adequately

40
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the quality of the water in a river and in the major inputs. Many

sources of information were investigated in searching for the data

needed to develop the model. Information was obtainedzfrom interviews

with representatives of the various industries, STORET, the Environmental

Protection AgencyVs data acquisition system, and river surveys conducted

by Alabama Power Company2 4 and Gulf States Paper Corporation.2 5

It was hoped that STORET, a computer-oriented system devised by EPA

for-storage and retrieval of water quality data,2 6 would be one of the

principal sources of information. However, as a result of studying a

report by Miller and Walters2 7 on the use of STORET in water quality

management and gaining some experience with the mechanics of using the

system, it was concluded that the data available for the Warrior River

was not recent, and therefore of little value in providing input to the

model.

The remaining sections of this chapter are devoted to a general

discussion of the sources of information resorted to in the search for

each type of input data. A detailed listing of the data sources and all

data gathered for each reach of the river is presented in Appendix II.

6.2 Velocity Rate Constants

Values of kl, the overall deoxygenation constant, are necessary for

each input of industrial waste or discharge from a polluted stream, as

well as k 1 values for the stream flow below each of the dams on the

river. The k1 values immediately below the dams were obtained from BOD5

and BOD2 0 values measured at these locations by Gulf States Paper Corpora-

tion during -their summer river surveys.2 5  In those cases where BOD5 and

BOD2 0 values were obtained by some of the industries on the river, such
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as at Empire Coke Company, 28 k values were obtained through interviews

with representatives of the particular industry. When such values were

not known, typical k1 values given by Allen and Bodenheimer2 9 for paper

mill waste and by Eckenfelder2 1 for other types of waste were assumed to

apply for the industries in question.

The reaeration rate constant for each reach was computed by the

O'Connor-Dobbins formula given in Section 5.9.1, while values for the

other constants--k3 , r, and s--were all assumed to be 0.005.1 3

6.3 Dissolved Oxygen and BOD
in the River and its
Tributaries

The major portion of the data for the parameters was obtained from

the previously mentioned river quality surveys conducted during the

summer of 1972 by Gulf States Paper Corporation2 5 and Alabama Power

Company.24 Additional information was obtained from two publications by

the Geological Survey of Alabama pertaining to stream quality.3 0'3

6.4 Industrial Withdrawals
and Discharges

The primary source of data on withdrawals from the river for use by

industries was an interview with Horn3 2 followed by a perusal of the dis-

charge permits on file with the Alabama Water Improvement Commission.

Data concerning the quantities and characteristics of the wastes

discharged by the various industries were largely gathered from personal

contacts with representatives of the industries--Fuller,2 5 Davis,2 8

Woods,3 3 Witherspoon3 4  and Sandifer3 5--while some additional data was

obtained from the AWIC files and from historical data tabulated by

McClure. 36
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6.5 Flow Rates

Principal sources of data regarding average rates of flow in the

Warrior River were provided by Bowers3 7 and by an impact study covering

the effect of the Holt Dam on the water quality of the river.2 4

Information concerning rates of flow in the tributaries to the

Warrior River was found in the USGS publication of flow data in Alabama

for 197138 and in two publications of a similar nature which were

released by the Geological Survey of Alabama.31' 39 Information on dis-

charge rates from the Tuscaloosa Water Treatment Plant were obtained

from records kept at the plant.4 0

6.6 Water Temperatures in the
River and its Tributaries

Data regarding temperatures of the water in the river were found to

be plentiful in the previously noted river quality surveys conducted by

Alabama Power Company2 4 and Gulf States Paper Corporation2 5 during the

summer of 1972. Similar data for the tributaries were found in Circular

36, 3 0 a publication by the Geological Survey of Alabama regarding sur-

face water quality in Alabama.

6.7 Cross-Sectional Areas

The only recorded measurement of cross-sectional area of the

Warrior River was taken above Oliver Lock and Dam by the USGS.3 8 Judging

from values of width and depth given at this section, it appeared that a

trapezoidal cross-section could be assumed for the river with the top

width approximately twice the bottom width at that particular section.

Since no measurements of cross-sectional area were taken at other

locations and also as there was a lack of information indicating the
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general shape of cross-sectional areas, the trapezoidal shape was assumed

to apply over the entire stretch of the river considered in the study.

Based on this assumption, the area of each reach was calculated by the

following equations:

A = d/2(WT + 1/2 WT) (22)

which simplifies to:

A = 3/4 x d x WT (22a)

where A is the cross-sectional area, d is the mean depth, and WT is the

width of the water surface.

Values of the width at the water surface at normal pool elevation

were scaled off navigation charts of the river published by the Corps of

Engineers.20

Mean depth for each reach was taken as the difference between nor-

mal pool elevation in the particular reservoir containing that reach and

the elevation of the river bottom in the reach. Normal pool elevations

were taken from a pamphlet published by the Corps of Engineers4 1 on the

Black Warrior and Tombigbee rivers. Elevations of the river bottom for

each reach were taken from information provided by Bowers.3 7
each reach were taken from information provided by Bowers.



CHAPTER VII

DISCUSSION OF RESULTS

7.1 Comparison of Simulated
and Observed DO Profiles

The results of applying the developed simulation technique to the

Warrior River are shown in Appendix I in a tabular form printed by the

computer program developed by the author for this model. In order to

facilitate evaluation of these results, the simulated dissolved oxygen

values in Tables VII through X of Appendix I were plotted in Figures 5

through 8 and compared with the profiles based on observed conditions in

the same stretch of the river. These measured values of dissolved oxy-

gen were taken from the river surveys conducted by Alabama Power Company2 4

and Gulf States Paper Corporation.2 5

Based upon a visual comparison of the simulated and observed pro-

files, the results, which showed an error of less than 10 percent in

most places, indicated that the developed model does provide acceptable

accuracy in the prediction of dissolved oxygen content of the river.

Some factors contributing to the differences between observed and simu-

lated profiles were: (1) the highly variable nature of dissolved oxy-

gen content in a stream, (2) the assumption of complete mixing used by

Pyatt in developing his dissolved oxygen prediction equations for impound-

ments, and (3) the errors inherent in the measured values, which are

monthly averages of observed values at one point in the cross-section
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rather than representations of lateral or vertical profiles within the

cross-section.

The lack of observed data at each point was such that the results

of a rigorous statistical analysis would have been inconclusive. However,

in view of the fact that observed values varied from the means at each

point by as much as 10 percent and considering that in most cases the

simulated values fall within plus or minus 10 percent of the observed

values, the results of the simulation certainly seem to be adequate.

In those cases where the profiles differed by more than 10 percent,

the discrepancy can be explained from a physical standpoint. In the

Bankhead Pool the simulated profiles for each month exhibited the same

general downward trend (proceeding downstream) shown by the observed

profiles; however, the simulated values were somewhat lower than the

corresponding observed values. This slight discrepancy is considered to

be due to the complete mixing assumption employed in the DO prediction

equation by Pyatt, Equation (9), which was applied in the highly-strati-

fied Bankhead Pool. As a result, the simulated values represent more of

an average of the higher observed values near the surface and the lower

observed values at greater depths.

A sharp difference between simulated and observed profiles is

noted in the Holt Pool near river mile 362. The observed profiles show

an almost linear increase in DO between Bankhead Lock and Dam and Holt

Lock and Dam, while the simulated profiles exhibit a much sharper

increase in DO immediately below the Bankhead Lock and Dam. This is

followed by a more moderate increase in DO from river mile 362 to the

Holt Lock and Dam. The difference between the two profiles is probably

due to the manner in which the profiles were drawn, that is, by
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connecting both the measured and calculated DO values on these profiles

by straight line segments in which the dissolved oxygen values between

separated points is not elucidated. The higher simulated dissolved

oxygen value near river mile 362 is what one would intuitively expect

as a result of the oxygen-depleted waters released from Bankhead Dam

undergoing a much more rapid dissolved oxygen recovery than that shown

in the observed profile due to the large oxygen deficit at this point

and the corresponding high rate of reaeration.

In Oliver Pool the two profiles match quite well, with the simu-

lated values slightly higher in most places. The above situation may

be attributed to the use of the Streeter-Phelps equation for free-flow-

ing conditions, Equation (7), which would be expected to yield moder-

ately higher values of DO in a semi-impounded reservoir such as Oliver

Pool.

Excellent results were obtained in that portion of the Warrior Pool

studied, where the simulated and observed values agreed quite well.

In general, the model seems to work quite satisfactorily in pre-

dicting the dissolved oxygen profile of the Warrior River and it is

anticipated that both this modeling technique and the supplementary com-

puter program also developed in this study could be successfully applied

to any river basin.

7.2 Selection of Locations
Providing Optimum Water
Quality Data

Since the primary purpose of the analysis performed in this study

was to select those points which would provide the optimum water quality

data with particular regard to the dissolved oxygen content, the simulated
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and observed DO profiles were utilized in accomplishing this objective.

The selection of the following points for placement of the anticipated

five DCPs was considered most advantageous from the standpoint of pro-

viding useful information:

(1) R. M. 385.0 (below the confluence of Locust and Mulberry

Forks)--this point would provide data that could be used to

evaluate the quality of water entering the section of the

Warrior River considered in this investigation. Placement

of a DCP here would provide for collection of data that is

necessary as the initial input for the system into the

developed model.

(2) R. M. 365.0 (one-half mile below Bankhead Dam)--monitoring

at this location would give an indication of the quality of

water entering the Holt Pool as well as monitoring the point

of lowest dissolved oxygen content in that reservoir.

(3) R. M. 346.5 (one-half mile below Holt Dam)--Since Oliver Pool

contains almost all the inputs from industries in the stretch

of the river studied, a knowledge of the quality of the water

entering this area would be of vital importance to effective

management and control of this highly used water resource.

Based on this reasoning, the placement of a DCP at this par-

ticular location would permit evaluation of the water quality

before reaching the highly industrialized sector of the river

further downstream in the Oliver Pool.

(4) R. M. 338.2 (forebay of Oliver Dam)--A DCP placed at this

location would serve a two-fold purpose. First, it would
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provide for monitoring of the point of lowest DO concentra-

tion in the Oliver Pool. Second, due to the general downward

trend of the DO profile from Holt Dam to Oliver Dam, it would

provide assurance that an improvement in water quality at

this point would be indicative of improved quality in the

entire reservoir.

(5) R. WI. 335.0 (approximately three miles below Oliver Dam)--

Monitoring performed at this location would provide data to

be used for evaluation of the quality of water leaving the

investigated area as well as for comparison with data col-

lected at the entry point to the system for which the model

was developed.

A map of the entire length of the river studied showing the selec-

ted DCP location sites is shown in Figure 9. Detailed maps of the river

showing the segments used in modeling, the tributaries to the river,

the locations of all significant waste discharges and the DCP locations

are presented in Appendix III.

In addition to the reasons discussed above, these particular loca-

tions were selected to provide the initial input values of dissolved

oxygen for each reservoir required in the developed mathematical model.

Thus, values of dissolved oxygen (and other parameters) obtained from a

relatively few critical locations may be utilized in the developed model

to simulate and predict water quality over the entire reach of the river

selected. As an example, values of dissolved oxygen measured by the

DCP located just below Colt Lock and Dam (R. M. 346.5) may be used to

predict DO values in the Oliver Pool as a function of the quantities

and characteristics of the wastes discharged into this segment of the
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river. Alternately, the required DO level at this location may be

obtained which will produce a desired water quality in the pool under

varying loading conditions of discharged wastes. In this latter case,

the information provided would assist in determining the amounts and

characteristics of water to be released through the dam for a given set

of waste inputs :uch that the desired water quali- will be maintained.

Additionally, the measured DO value and the resulting simulation model

may be employed to predict the optimum point in time for discharge of

impounded wastes by the industries in order that the water in the pool

will not be degraded below the desired levels. Similar examples may be

given for the simulation and management of water conditions in the Holt

and Bankhead pools based upon the DO measurements at the DCP locations.

Extension of the modeling technique over the entire reach of the river

may be performed since water quality data in an upstream segment serves

as input conditions to the successive downstream segments.

Although the model developed in this study was based primarily on

dissolved oxygen, for the reasons previously given, it is in a form

easily adaptable to simulating concentrations of dissolved constituents

such as chlorides, sulfates, phosphates, and metals which might be pre-

sent as a result of drainage from mining operations and runoff from

agricultural activities. The net effect of many of these materials on

the pH, conductivity, and temperature of the receiving water will be

monitored by the DCPs and simulation of these effects may be obtained

by use of portions of the developed model other than those applying to

the DO prediction equations. For a detailed study of these types of

constitutents, the DCPs may be moved to appropriate monitoring locations.
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Although not investigated in this study, the use of DCP data in

conjunction with ERTS imagery may be employed in a basin-wide study

of the land use-water quality interaction. As indicated previously,

the DCP will detect at its location the residual effect of upstream

surface runoff and drainage from land-use activities.

In summary, the DCPs are intended tc, ?rovi"a inut: cata to the model

developed for the river, enabling the model to be used as a valuable tool

in formulating and implementing plans for the management of wak.r resources

and general environmental quality in a river basin.



CHAPTER VIII

CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

The sites for placement of DCP monitors in the length o- 'he

Warrior River from the confluence of the Locust and Mulberry For.<: to

downstream of the Oliver Lock and Dam have been selected and proposed

as desirable locations for the assessment of water quality. Dissolved

oxygen was selected as the parameter of primary importance and the

selection of the DCP sites was based on observed and predicted loca-

tions of critical dissolved oxygen concentrations.

To implement the selection process, a mathematical modeling tech-

nique and supplementary computer program were developed for simulating

dissolved oxygen profiles. The modeling technique, based on modifica-

tions of the original Streeter-Phelps Equation by Pyatt, was shown to

predict values of dissolved oxygen concentration in the Warrior River

which either agreed quite well with the observed values or could be

explained on the basis of actual river conditions. Based primarily on

dissolved oxygen criteria, the following five locations were recommended

for placement of the five DCPs designated for use in the Alabama ERTS

project.

(1) R. M. 385.0--below the confluence of Locust and Mulberry Forks

(2) R. M. 365.0--one-half mile below Bankhead Lock and Dam

(3) R. M. 346.5--one-half mile below Holt Lock and Dam

(4) R. M. 338.2--forebay of Oliver Lock and Dam
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(5) R. M. 335.0--approximately three miles below Oliver Lock and

Dam.

In addition to monitoring dissolved oxygen, it is anticipated that

the DCPs will serve to monitor the other parameters of pH, conductivity,

and temperature to provide information concerning basin-wide land use

activities. The portability feature of the DCP will allow selection of

other monitoring points for more detailed information concerning specific

parameters and their relationship to a variety of activities.

The selection of the specific monitoring sites in this study was

designed to provide a basin-wide management capability in which the data

obtained at a relatively few locations could be employed to simulate and

predict water quality over an extensive river basin area. The selection

methods proposed in this study were also developed for general applicability

in the selection of desirable DCP or conventional monitoring sites in any

water basin.

8.2. Recommendations

During the course of this investigation several possibilities for

further study, primarily concerned with operation of the DCPs after

installation, have become evident:

(1) Provide for the collection of supplementary dissolved oxygen

data at locations where differences were obtained between simulated and

observed values, permitting modification of the model to obtain better

agreement with actual observed conditions.

(2) During the periods between overflights of the ERTS satellite,

allow the DCP to operate as a conventional automated monitor, transmitting

data to a ground receiving station.
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(3) Include an addition to the DCP apparatus which would allow

monitoring at different depths of the river, in order to evaluate the

extent and effects of stratification in the reservoirs.

(4) Since the DCPs are portable, consider possible relocation of

one or more of them in order to either expand or reduce the area of

coverage, such as monitoring the qG. liLy of water in - cLc. stream

(Mulberry Fork) in order to obtain base-line daLa o. non-polluted con-

ditions.

(5) Modify the DCP system for use as a network of conventional

monitors after the ERTS satellite is removed from orbit.
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APPENDIX I

INFORMATION RELATED TO USE

OF THE COMPUTER PROGRAM



Al.1 General

The actual computer programming utilized in the implementation of

the simulation technique developed during this study was performed in

the PL/1 programming language.4 2 The IBM 360/50 computer installation

at The University of Alabama was employed in running the program.

The following sections contain information directly related to the

program that would be useful to those interested in the programming

method and, in addition, examples are given of output for the Warrior

River during the summer of 1972.

A1.2 Flow Diagram

Shown in Figure 10 is a diagram indicating the general path of logic

followed by the model in simulating the dissolved oxygen profile in a

stream. It is intended to show the general nature of the process rather

than to show the specific calculations made by the program.

Al.3 Program Output

The output from the program is printed in a tabular form, with a

separate table being used for the compilation of data predicted for each

month. Examples of output containing simulated data for the area of the

Warrior Basin during the months of June, 1972, through September, 1972,

are shown in Tables VII through X.

A1.4 Definition of Variables

Summarized below are definitions for the variables used as input

data to the program:
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TABLE VII

RESULTS OF SIMIULATION OF WARRIOR RIVER (JUNE, 1972)

Ro ic. 385.0 TO Ro rio 335.0

JUNEv 1972

TYPE U S :,' i: ; D- O11NS RE A
R. q . I, .1.

FLODW RELEASE CSA YRPAVEL
(CFS) (CFS) (SQo FYo) Y1riE

( DAVS )

K1 K2 cO
(BASE El) (BASE ED UPPER END

(PPFi )

46153 4,58
68294 4q;o30
78468 4658
92556 1.83
27787 3.0
56265 28.51.
86062 1.83
12294 0.24
8587 0.16

7761 0.12
7761 0.20

7191
7191
7462
7711
9072
7462

15443
17589
28912
9562
7779
6693

0.00
0,16
0.04
0.12
0,14
0.21
1.62
0.01
0.29
0.30
0.06
0.32

NO,

DO
I.O!'E. Er.D

t '1 i

1A
2 A
3A
44
56
5A
7A
8A
9a
10A
103

11f

11t
124
13A
144
15A
164
17a
184
194
204
214

SO
soSO
SOH
R
N
SON
R
N
SD
I :C

I1

10I0

I0

IO
R
N
I
I D

385 00
3Fi2000
367.05
36 6. 00
365.40
361.50
347.50
346.90
346.30
345.70
345.70
345.20
344.;40
344.43
344.39
343,70
343o50
343.00
342.50
341 60
338041
338.39
338.10
337.00
336.70

382. 00C
367050
366.00
365.40
361.50
347050
346.90
346.30
345.70
345070
345 20
344 40
344.40
344,39
343 70
343.50
343.00
342.50
341.60
338041
338039
338.10
337.00
336.70
335.00

1895.0
1960.0
1.970,0
1970o0
1970o0
1985,0
1985,0
1880.0
1905.0
1904 3
1904.9
1905,2
1903.4
1903,7
1904.7
1974.7
19S0ol
1952.2
1970.7
1971.3
1971.7
1971.7
2150.0
214903
2150o0

1 700

LS80.0

215000

Oo01O
0o196
0o202
00203
00176
0.170
0.31C
00193
00192

0.198
0.196

0o195
00195
0.187
0.186
0.186
0.191
0. 190
0.187
0.125
Oo062
0.062
0.062

0.006
0 004

0.01.0
0 .00'

0,004
0,178
00137

0o180
00180

0 180
0.188
0o.190
0,180
00189
.0053

00030
0.020
00122
00132
0.142

600
5.,:
5,'

3,7
5.1
508
406
405
4.6

406

4.5
405
405
405
408
500
4.9
405
3.4
3,4
6o6
6,4
6.4

506
500
5.8
3,7
5 1
508
406
4°5
46
4,06
406
4.5
4°5
40,5
405
4°8
5°0
409
4.5
3,04
3,4
606
6.4
6.4
6 3

C'
c-'



TABLE VIII

RESULTS OF SIMULATION OF WARRIOR RIVER (JULY, 1972)

oR. 1o 385o0 TO R. Iq 330.0

JUL\V l,;

RF AC I'YPE JPSTREAvq Dm NS¥TRE r' -

1l
24
3A
44
54
6A
TA
9A
9A
106
1335
19C

I AB

12A
134
1 4A
15a
164
176
184
192
206
216

SO
SD
SDI
R

SIMC

R
N
SD
I C

I)

SDH
10

SOI
ID
R
N
I d
D

385000
382.00
367,50
366.00
365, 40
361. 50
347,50
346.90
346030
345070
345070
345.20
344 40
344040
344039
343 70
343 50
343.00
342. 50
341.60
338.41
338039
338.19
337.00
336.70

382c00
367.50
366.00
365 . 40
361. o50
347 50
3460 90
346 30
345070
345070
3450 20
344° 40
344040
344 39
343, 70
343.50
343.00
342.50
341060
338041
338.39
3380. 10
33 700
3360 7C
335000

FLO', RELEASE CSA TqAV'L
ICFS) (CFS) (SO. FT.) T It;E

(OAYS)

2150.0
2250.0
2260.0
2260.0
226000
228500
2285.0
2270.0
230500
230403
2304,9
2305.2
2303,4
230307
230409
241409
2420.3
2392.4
241009
241 1 o3
241200
2412.00
2630.0
2629.3
2630.0

2260.0

2270.0

263000

46153
682914
784-6e
92556
27787
56265
86062
12294
8587

7761
7761

7191
7191
7462
7711
9072
7462

15443
17589
28912
9562
7779
6693

4050
29o5~4258

1 .803

1083
0020
0014

0.10
0. 16

0000
0013

3.00
011°
Do 1
0017
1o29
0.00
0.22
3 24
0.05
0026

1 K2 D00
(BASE E) (OASE E) UFL[ E;:D

[PpI:}

0.1!5
0.20C
00197

0 0 167
00163

00202
0.201

0.205
0 o204

0.202
00202
00199
00197
00197
001914
00193
0o202
00135
0.067
0 .067
0.067

Oo.006

0.004

000012

00o15

0o200
00200

0.203
0.203
0.213
0.218
0.208
0.211
0.061
00033
00022
00139
00152
00162

60.7

5oY:
3.4

507
4.03
4.1
4;o2
4o2
4 00
3.7
307
307
3.9
401

402
4.1

301
301
507
5.7507
1: 7

5o

LO-Gf. E

50 7

4025042

307

309

4.2

4,2o

30o
3o7
507

5.9

507

45072

3.1
3.1



TABLE IX

RESULTS OF SITULA1ION OF WARRIOR RIVER (AUGUST, 1972)

R. -1 38500 TO R, ,o 335.0

AUGUSTv 1972

TYPE UDSTIE4v
R. kl.

DO::N STR EA: I
R. M.

FLOU! RELERSE CSA TRAVEL
(CFS) (CFS) (SQ. FT.) TII;E

(DAYS)

K I K2 DO
(BASE E; (BASE E) UPPER E,;J

(PPI; P

46153 6. 1
68294 44030
78468 4.58
92556 3.66
27787 3.97
56265 28.51
86062 1.83
12294 0.26
8587 0.18

7761 0.13
7761 0.22

7191
7191
7462
7711
9072
7462

15443
17589
28912

9562
7779
6693

0.00
0.17
0.05
0.12
0o15
0022
1.62
0.01
0.29
00.33
0.07
0035

NO.

IA
2a
3A
44
5A
65
7A
84
9A
104
138
100
114
I 1 C
11C
124
13a
144
154
164
1 7
18A
194
2D3
21A

SO
S9N
SDH
R
N
S3H

N
SD
I I-C
ID
13

ID
ID

Id

SDH

N
I ld
19

DO
L 0 : . E 'L;

( PP;;i

385.00
382.00
367 50
356.03
365. 40
361.50
347.53
346090
346 30
345 70
345.70
345.20
344.43
344.49
344. 39
343070
343.50
343.00
342o50
341.63
338.41
338.39
333.13
337.00
336.70

382.00
367.50
366.00
365o40
361 .50
347.50
346.90
346.30
345.70
345.70
345.20
344,40
344.40
344039
343 70
343.50
343 00
342.50
341 .60
338.41
338039
338010
337,00
336070
335.00

161500
171500
1730.0
1730.0
1730.00
1740.0
174000
173000
1755,0
1754.3
1754 9
1755.2
1753.4
1753.7
1754.9
186409
1870.3
184204
1860.9
1861 e 4
1861.9
1861.9
2000,0
199903
2000. 0

1730, 0

173000

200000

0.218
0.218
0.206
00209
0. 183
0.188
00320
00207
0.206

0.210
00.208

0.207
0.207
0.194
00193
00193
0.194
0.193
0.193
0.131
0,065
0.065
0o065

0.012
0.00007
0.0040
0o002
0.044
0.010
00004

0017Y
00133

0. 176
00176

00176
00176
0.184
00109
0.182
0.184
0.054
0.028
0.020
0.118
0.130
0.137

606
6.02
601
6.6
50.
506
509
3.9
306
306
3.6
3,5
303
3,3
303
3.2
3.6
308
307
306
2. 4
20.4
5,4
5.4
504

6c2
6.1
6.6
5. 1
5.6
509
309

3.6
3.6
306
305
3°3
3.3
3.3
302
3.6
3.8
3.7
306
2.4
204
50, 4
504
5,ot
505



TAB LE 'X

RESULTS OF SIEIULA9'!O\N OF !ARRIOR RIVER (SEP1TEl.iBER, 1972)

R. H. 385.0 TO Ro i. 335.0

SEPTEMBERf 1972

FAGCK TYPE gPSTREA4 DO':NSYTRFA; FLn:! RELEASE CSA TRAVEL
(CFS) (CFS) LSQ. Fo.) rlf;E

i DAV S )

Klk. K2 DO
(BASE E) C1ASE ED UPFFR Ef:D

[PP;;

46153 4.58
68294 29.53
78468 4.58
92556 1.83
27787 3.40
56265 28.51
86062 1.83
12294 0.22
8587 0.15

7761 0. 11
7761 O.18

7191
7191
7462
7711
9072
7462

15443
17589
28912

9562
7779
6693

0.00
0.15

0.10
0.13
0 18
1.39
0.01
0.25
0028
0.06
0.30

14
2A
3A
4A
54
6A
74
8A
9A
104
IOa
10-
I 1 &
118
11:
124
134
144
154
164
174
184
194i
204
21A

DO
(LPP:E. E:D
{PF;;2

SO
SD

R
N
SOhK
R
N
SO
li r!C
I i
17
Id C
ID
19

1')
Id

IR
N
Id
1;7

385.00
382.o30
367.50
366c00
365 40
361.50
347053
346090
346.30
345.70
345.T0
345.20
344.40
344.40
344.39
343.70
343.50
343,00
342.50
341.63
338.41
338.39
338. 10
337.00
336.70

380200
367.50
366.00
365.4.0
361 50
3t; 7,50
346.90
346.30
345070
345070
34 520
344040
344° 40
344. 39
343. 70
343.50
343.00
342.50
341.60
338.41
338. 39
338.10
337.00
336.70
335000

1975O0
210000
2110.0
2110.0
211000
2125.0
2125.0
20;40.0
2055.0
205403
205 4.9
2055.2
2053,4
2053. 7
2054. 8
2194. 8
2200.2
217203
2190.8
2191.4
219201
2192. 1
2320.00
2319.3
2320.0

2110.0

2040.0

232000

001.99
00203
0~206
0.20Y
0.180
00183
00314-
0.207
0.206

0 204

0O201
00201
0.187

0.186

00187

00.186
00186
00128
0 .065
0 065
00065

00001

0.004

00046
0.010
0. 00'
0o 190
0. 143

0.190

0.190

00190
0.200
0.202
00192
00200
0.050

.0030
0.022
00130
00140
0. 150

509
502
500
507
3.0
4.4
500
404
402
402
4.2
4.1
4.00
4.0
4.0
4,0
4°4
4.5
4.4
4.4
302
302
6.7
6.6
6.6

5,2
500
5,7
300
404
5.0
4°4
402
4.2
402
4.1
4,0
4, 0
4.0
4.00

404
4. 5
4.4
4014
3.2
302
6. 7
6,6
6.6
6.5

o'
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TOT-REACHES

NOR

NOM

I(320 E

X

Y

LAI(S)

DEFI(S)

FORM(S)

TYPE

REACH

MONTH

UPSTM

D INSTh T

DISCH

DIS I

WTHDR

REL

RIVTEMP

INTE[MP

WIDTH

DEPTH

total number of reaches into which the river is
divided.

number of reservoirs on the stretch of the river
being modeled.

number of months for which simulation is to be
performed.

deoxygenation constant due to bottom deposits at
20 OC. (base e), days-l.

deoxygenation error term, days -1.

reaeration error term, days-1 .

concentration of organic matter in reservoir S
before waste inputs from upstream are added, mg/l.

concentration of dissolved oxygen in reservoir S
before waste inputs from upstream are added, mg/l.

type of equations used for predicting DO in reser-
voir S, Streeter-Phelps or modification by Pyatt
for reservoirs.

category of input for the reach in question--SD,
SDH, R, N, ID, IW, IWC.

number of the reach.

month for which the data was taken.

upstream boundary of the reach, river miles.

downstream boundary of the reach, river miles.

discharge of a tributary, cfs.

discharge of an industry, mgd.

amount of withdrawal by an industry, mgd.

amount of flow released from a dam, cfs.

temperature of the river water, 0C.

temperature of water in the input to a reach, °C.

surLace width of the river, ft.

mean depth of the river in a reach, ft.
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BOD5  BOD5 of the input waste at 20 °C., mg/l.

BOD_DITN BOD5 of the river water (20 °C.) immediately

below a dam, mg/l.

DO dissolved oxygen concentration in the input to
a reach, mg/l.

DODWN dissolved oxygen concentration of the river water
immediately below a dam, mg/l.

K120 10 deoxygenation constant at 20 °C. for the river
-l

water or input to a reach (base 10), days 1 .

A1.5 Listing of the Program
Statements

On the following pages the actual PL/1 statements of the program are

shown. It is hoped that any potential user employing the information

provided in the preceding sections of Appendix I, in addition to these

program statements, could either utilize the program intact or easily

adapt the programming to fit his particular needs.
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ST(RT: PR:]C )PT rNS(MAiNN;J

/' ThiS PRJGRAX SA-,ULATES DISSOLVED OXYGEN EN A RIVER ENV RCE",NT - -=

DCL ZILCH CF.R L9
DCL IE:'PZ EXP2) FIXED DECIM;L e59 3);
DCL FR (4; CHA,i:,; VARYING;
DCL CIT FIXED DE'CItAL(3);
DCL CAP. STY(i6) FIXED DEC!,MALSO});
DCL (Q_ 'i6b)DrUT(16}) FIXED DECIMAL(6,I);
DCL {X vY CH;i) FIXED DECI iAL.5,3) 3
DCL (TYPDEAFACH) CHAR(3) VARYING;
DCL .iOD45jMONT:-) CH-iARi9 VARYING;
DC. UATE(: CF:AR(159 VARY7NG;
DCL (TOT_-REAChES2 NOth9 NOR2viNST FIXED GECIMALM2Di
DCL (SLDPE 9 INTER.EPT, FIXED GECIMAL(64D);
DCL IC7DvEDEsF7GvHiH JK7LvOvPQ) FIXED DECIIAL(79G4;
DCc ( gDv_UPvBnD 5 L-'.9D_: L_LDlN vLA-_~N T ODS_] N V T sBODO;NgLA20v

LAI(,4) FIXED DECI-;AL659If;
nC_ ('IVTEMP,IPNTEpPDO~DO-UPvD-_D'NDOGSAT-~DOGSATT.'J9EF-UPvGDEFUN9

DrEF-_I 2DEFDFF INiT7vDO_ NITvOE~F4D) FIXED DECIMiAL(4viD;
DCL (K120 _UP 9Ki201_O9 :2z OEK21O2 20 LE.K120o XK1IK2 I(3~
K320> ' 0Z 9 4 9ABS FIXED DECI-'iALC573);

DCL {Q-_UD91SCHKeWIDTrHDEPV;KHFLOUJ2 REL) FIXED DECIMAL6vb91);
DCL (UPSTisvDWNSTh.tlDIS-i 9 lWTHDR) FIXED DECIMAL(6g2S°
OCL (LENGTHCS2; FIXED DECIMAL(6);
DCL VEL FIXED DECIN.AL(4 92};
DCL TI'VE FIXED DECIMAL(592);
')CI VOLJU'E FIXED DECIKAL(10);
v'(i} =VJUNEo;

r( 2) = JUL ;
M1( 3)=4JdGUSTO,
sV1( 4 ' =' SEPTE FER ;

GET 'biT(T T_-REL.-CHESvNOR 9NObM,320-_EX v YZILCH) (COL( 19vF2)}COL(21Dq
Fi2)vCOL(3oT;F;2)vCOLFi5; 9 F{593}COL(5l) FI5 v3C) COL6LD2 F¢I5v3D
XC 14)2 '') 1

00 S = 1 TO NOR,
GFT FDIT(LAI(Sv)EFi(S)9 FORNI-S) 9Z:LCH) (COL(lovF(591)COL1O0)9 FF(4 9 1D

COL(20)A(C3),X57) 9 A(1));
FND;
i=

IFSET: Q.UP = 0O0D
i?20_UP=OoO;

DEFJP=Oo0;
B3D_UP=O 0;
.PUT 'AGE;
rUT SKiPI(3) ED:T; SJ:;iAARY FOR t.ARRIOR RIVER °) CODL(48)ADVA
PJT SK:P2Z) EDT;7Ro [-;. 3385.0 TO Ro M. 335.0D0 (COLC47),A);
DTE ', =KC I) , : 1972 ;
PUT S47P,2) EDeT;Da&TE(K) (COL54i)A);
PUT S'<IPl3) EDT (REACH QT YPE' 9 UPSTREA",99O'vNSTREAM"9 FLO

CRELEASE vCCSa092TR54VE~9ACK8 2A.K2CO2  v'DOD) (CCL(l))vAvCOLO8DvA
C3Ll15) 9 4 9 COL(25v7A 2 C5L(38) A9 COL(46) 2 ACOL(59)gA9 COLI68DIA 2
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COLG80;qC£OLL9;g) 9 ACnU..102) 9 A 9 COg(l14D 9A;
'UT SKIP EDITl NOOER o '; 0o,9Ro vo 9Ov(CFS)O 9o(CFS)oQ( SQo FTog° TME°90

'(BASE El° 9',BASE E;°,qUPPER ENDCLOVWER ENDO) (CGL(2) 0 AvCOL(17)9AQ
CL{28),ASnLL38)sA 0CDL(473)9ACOL(56)9 A9 COLl69)AhCOL(77),vA
CL() 2 9sr9-0L 99sA.sCO' ( I: A);

PUT SKI' ED)IT( (DAiYS) 0
9 ({PP~;s 9(PPM)0 ) (COL(6899ACOL(l013)9Av

C3L(113) .)A)
')T SKIRP(2) Ei)T( 0O) (CCL(23)A3;
N = O;
r = 0;
aDD: N=N+I;
IF N = i THFN DG;
T = T 1;
L4_!NT; = LLA(TTi
rE_--INIT = )EFI:T,;
END;
ELSE GIq TO .HECi,
C-.EC<: 1T N > TOT REACH ES THEN DO;
E- ;=N THEN GO TOrn LasT;
ELSE G1 TO NEXT;

^EXT: k,=H'>1;
GO TO RESET; END;
ELSE DO;
RElD: GET EOT(TYPEqREACHKqONTH) (COL(I sbA(3J)COL(6bA(3) 9 COL¢I.D,

A;9.3; END;

/tt..-::<8 ..-e- POLLUTED STREAM; D.SCHARGING INTO RIVER ~¢r;~~.~rr;ne. /

IF "'PE=OSD '~ THEN DO;
STZEAvi:G9T EDOT( JPST 'DW'iNSTkHlDISCHRIlVTEMPJWIDTH 0 DEPTH} COLi251 FDa692DI

COL(3,; 9F(692),iCOlLt:-5 )F CL69!} COL257) )F(49LlgCOLC65) F(6tID
COL(75:,F(6( );

GET EDIT (iOD5 3300 (20- 091NTEtiPo ZILCH) (COL 253 sF(6l 1) 9 CL(37D F14.9 D
C3L(46, F-(593) C'L 457 FIt4 9 l) 0 XC'9)9 Ai 3;

IF N=1 THEN O -L;P=DO;
ELSE DO_ UD=DrSATR - DEF_UP;
D1S4 ;J = 14=65 -5 o4L~INTEMiP ;- ,0008*INTEMP4t2 - 0.00008oo NTEMP*3;S
_E\jSTH = (JPST; - DW!NST;: ' 5280.0;
CSA = 0°75 e .D'T;- : DEPTH;
VDLUT -= -Sa " LENGTh;;
FLDt3 = D-UP OD:SCK;
VEL = FLOW/%SSA
TIME = (LENGTH/VELi / 64o00o0o
Ki2 E = K120_10 :D 2,303;
K120-_IX = ((Kl20-UPQ-UP5 - (K120-_EDISCH)l / FLOW;
K22?0-0 = (12.90 : VEL*:0O5 / (DEPTHT.lo5);
K22 -E = K220_-O '0 2o303;
<( = K120- 1lX * 1L047*eCR!VTENP-20Q0);
K2 = K220-F loO159'(RIVTENMP-20oO);

K3 = K320_ i 1o047'::(RIVTEliP-20oOB;
L4 IN = ROD5 / C!O-l.O0/;Z2o71"*,5;K120EE)));
LA20 = ((DOD _P Q_UP) -> LA_IN * DISCH))/FLOW;
LA = LA20 * (0,02 - RIVTEMP + 0060);



DEF_ N = nr)fSAJT - DO;
CGSA.R = 4.'.5 - Oo4i:RIV:'E'-: ? OoO08*RiVTEf;.P*;2 - 000008RIlVTE4PO;3;

rEF = (l(DOSATR-DO_2L' P QUPi < CDEF_IN * DISCHF) / FLOW;
:F FR.'(T;, = 'RES' THEN DO;

= FLO4J * (64zOOO/VOLU;-E9';
F N=-. THEN Z = DlSCr: i,4:O00oO/0/VOLUNIE);

F'LSE Z = Q_P ; (8400.oO/VOLU,-E);
f = K i ' /3 U ;'~
tB = I(2 + 2;
BS3 ,_SD L DW!N L- i_ iN: T';i°O/I2.71T4{A T[MED)) A T{ZMLAD/A/D *

i oU -lo I0 / ( 2o 7*:{A'TA T-E I ) )9
C = DEF INIT - ZZ*4DEF/B;
O = KI / (A-BJ;
E = LAiNIT -LA-L';/B;
F = !or/12,7LtCB'Ti;-;En;9
G = Kj/(B-A);
H = LA_.N!T - Zi;L)/ o
v= ,,o0/(2.7 ;1(4 TliE 9 );

K = GEF +r (KI'LZ,)/&
DEFS3,: r)rFtWN = C -CDvE )*F + (G*H)*I i- (J4KD;
END;
ELSE DO;
L _,N = (LA X-/Xi) CloO/(2o71*t(Kl*TIE)H) + X/Kl;
EXPl = io. / (2.07io:*KI4TI iE;;
EXP2 = Io.' / (2o7i*'( K2*Ti[E));
IF K2 = KI THFN DO;
L = KI '  Ti/E;
o = !X-:-YX/K7;

DEFD-iN = (L*O 4 DEF - PJ ) EXPI - P; END;

ELSE DO;
DEF_'-$N = U(KI :LA - X; / iK2-;(1f * ¢EXPI - EXP2D D {CX4V)/K(2)

Cl O-1.0t/2o71*l,'K2*T2 E)4t )- DEF*(lo0/i2.71*(K2Z*Tl1E)Ds; END;
END;
IF LENSTH < (3o.152?800'; THEN DO_DWN = DOUP;
ELSE D_-DWN = rOSATR - DEFD'N;
PRINT SD: PUT SKIP ED.iTRE/.CH9 TYVPEUPSTMvDWNSTMQFLOWJCSAT[IME9K!l(K2

D3_UP-')D_DWN; CCOL,2) Ai3) vCOL(9) A(3) COfL 17D F(6,2DCOL(283D
Fi(b2)'COL(37 FI6vjvl),COLt58)DF(6),COL(68DF(5v2,)COL(79)PF(593~v
COL(90) 9F:5 9s3)vCOL(I101) F4l) CgOL(ll13)vF(4vl);

3_jP = FLOW;
nOD _-P = L _OWN / (0.02 4 RIVTE.'P - 0.6);

DEF-UP = 3f1SATR - DO_-DN;
KI2GUP = K(20- _:X;
GO TO ADD;
END;n

/4-;r-::...:: .iZ::;:-;r CLE AN STREMI DISCHARGING INTO RIVER :**A- ; w ZNG4R:.:I**-'./

ELSF IF TYPE = 'SD'X THEN DC;
STQE4' -CLEAN: GEY EDITTUPSTM;9 ,D':NSTMHpvDISCH 9RIVTENPWIDOTH90EPTH)

lCOL(25) F(6,bZvCDn(135s sF{672C COL ,F6 COL(5?79F49io



CCL-65; :F; 7 k :SCO L ; 7-V 9.zD) ;
GET EDIYTD]nVNTENP? Z:LCHi{COL(37)g F(49~9COL¢57e)Fa4¢ DvX(l9)vA~I3D°
lF N!= THEN DO_UP=DO;
ELSF D0 UP = oCSA4.R - CEF-UPo
DGJSA!l = 34o65 - Oo '.: .,NYEi'P 0 0:08-zNTEi'.P*2 0.00008- RIVTrP'z;3
LENGTH = -UPST; - C,'ST4, ; ; 5280°0;
CSA = 0C75 ::.C':;: DEp;.'FH
VOLU;,. - CSA * L--; T;-:S
FL = QUP 4- DZSCH ;
VEL = FLOU / .C ,
TI4E = (LENS.-;/VEL / 53At.000;
';K202 I = :'20 _UP : Q-_UP; / FLOW;
K220_Z9 = i2o0 :; SEL<;2o } J/ (DEP7THP'Co5D;
1220_- = X220_-0 : 2o-0L3
- = KI120 _-!X oO1:. 7 T VYE-;P-20oO;
'2 = 220-E - D;5.' , V-t;1?-2000) 9j

R3 = K320 E .' oC47:::: VTEi;P-20 00 ;
LA20 = CBCUD- O, Q UJ? / FLO-W;
LA = ;420 = {0002 <: RiVTEi;P - 0060};
fiEF- _'' = ,OSAT. - Dn,.,
DOSAT" = 14o65 - 0O4:RV'TE;- - OoO 00'RIVTEMP**2 - O.OOOOSR000 VTEM4P*-3o
DEF = ,O!DOSTR - DOU9 : Q_UP -c- (DEF IN - DISCHDD / FLOW;
iF FDRI"N:, = RESJ "-;EN DO;
U= FLO'! '1- ZP6400,O/VOLU,;-E.I;
F N=- THEN Z = D:SCH ;; CO6400 00/VOLU;-E);

ELSE Z = QUP t z640000/VOLU,-IE);
4 = K P '(3 - !U;
S = 0 -- 'Js

R3OSDH: LD'-N = L_-~<Z-Co0 O/t2 0 7[i#¢A~TiMEJ}D 4 U(ZC-LA)/AD
( ioO -Z°O 2o 7/i;;l::;'Ti: ,E ) }) ;

C = DEF-INIT - ;Z*CEF)/B;
O = KD / ;A-Ch
E = LA-INiT - fZ:La)/G;
F = o./^ 2 071;:(-;~TIs-iE9
G = XK1/.-A;;
F = LAiNtIT -I .::. ,

J = Z/B;
X = DFF - CKiC.:LsA/;
nEF -SDH: DEF _O'N - ,'" C DE5;F + [G*H'[ e (JCKD;
END;
ELSE DO;
L DU!N = .Li - X/i-D tu ilO/:227:- rl*TTI.MEMDD A I/Kl'U
E"P' = ,.O / C2,7'.:.':- ;:;:'ED~;
EXP2 = iU0 / (20 L' ;' .2..7i.E"
YF K2 = : Ti;-;EN DO;
L = T E;
n = ;LA-X)/;(U;
P = X,,Y)/ KZ;
DEF-D'.-N = (L*O v DEF - P3 : EXP. - P; END;
'-LSE DO;
DEF-CD-'N = C(K:IL ; - XD / ::(2-KI) (EXP, - EXP25D ((X+YD/K2)

[ I-oO.- OJ/27'.';K2.-7T-i;E? ;- DEFC(l 0O/(20 71o7I-(K2*TIH-4El)D END;
END;
IF LENGTH < [(00oC52 0 0o0 TKEN DO_DUN = DO-UP;



ELSE DOD.!N = D'SS;TR - GD--_D!'. N
PRNT _SDH : PUT SK.9? ED' T;,REAC TV9.YPE.UPSTti'nD!JINSTM FLIOt oCSAjT, "E'eI(! K2,

GO-JPD9_nD:DN: (C0LC2;..'A30 COLC9s fAl3.D QG0L62fFI6 92COL2ap2
F(G92) 1C3L(:3' fiF({6 9E QCOL:58) sF(6 DCO3L68 D9F{52D COL~79s)gF593}9
CgL(g92}sF:4 5~ COLCiPO!D ~F34s,) COLBt13JF~6~,DD

QU," = FLOW;
P,.D_UP = LDl:,: / 10u02 ::' RI VT-;P ; O6;D
rOF JP = OGS,.TR -7 GOC"'.;
rK20-_LP -1(=20 _M:Z;
GO Tr ArD;

/m;~:': REACH CONTAi;.NNG ,. OA-! OR OTHER FLC' CONTROLLING STRUCTL'RE .'/

ELSE IF T'!PE= 9R: '':-:i< DOG
RESERVD;IR: GET ED;:.UL;PST''.V'NSi'REL'R.VTED:PW2 DTOEPTD COL¢25)q

Ff692'; COL(L5;~,FC692;7CGz-W45)9F{691i)CCLt57) F¢49,lD9COL65)9FC6QD9
CL ( 75:; ,F ' ; ) '

GET ED7 i50 ODH':!DO3rC':.'N.UK20_ 09ZILC;D (COL259DQFI6lD COML37DF{4g.Iv
COlt_( 56i9F, 593; ,9: :{ 999A '9

IF N=; T';EN DOUP = 00;
ELSE DOOUP = DOSATR - DEF-UP;
LE NGTH = (UPSTPq - Dh'NS7-M5 - 5280°0;
CSA = 0075 ' 1lnDH a DEPTF:;
V3LU'E = CSA * LENGTH;
FLnW = Q_UP;
VEL = FL'W-;, / CSA;
T! kiE = iLENGTH/VEL3 / 86400°0O
<.L20-E = K120-_O0 ' 20303;
Ki2O-VM.X = Z20-E;
K2200E = (1 o290 VEL*:'0Oo5 / iDEPTH1. o5);
K220_E = K220- 0 2. 2o303;

K2 = K220_E F ' I 0.I:59 R.'I VE.-EtP-20oO)9
K3 = K320-F ': VoO7.'/i:RZV;T:P-20 .O;
LA20 = BOG_UP;
LA = LA?0 : :0o02 ;:: R;VTEMP - 0o60;9
DOS4TR = l4.65 - Oz.4:RI!VTENP .- O 0 O08mRIVTEMP**2 - OoOOORIVTEIMP9*3;
DEF = OGSATR - ' _IU_.P
DEFO':N = OSAT.R - DOG.' ,;
PRSNT _:PUT S:;(P FDIT F.EACf- TY PEv LUPSTPi4 DU.lNS Tb FLO0o REL, CSA, TINE

K9 19 1K2 DOUP. DO-D!UN9 CGLt(2)sA(3)s COL(9)q A3Dov COL1171) Fa69 2D
C3LC28), FG62;~ COLZ'37) FC691E' COL147) 9 F~6v1v9 COLM58} Ft6)D

C3L'68)9 Fi5s2;v COLt79'g F(593)9 COL:90) 9 F65v3hvC0L(101Ds F(4s

O UD=REL;
DEF UP=DEF _DWN
K(2DUP=K 220_e i X;9
GO TO ADD;
END;

/,~,<*2 .4'4,'8 R~ECA-; CONTAINING NO INPUT TO RIVER f.'~:~:¢.~:44*.$:/



/.'<:f: :bl:r:;:4:f1;: : OCCURS SEiLOW. REACH CCNTAiING A ODAN sttttsftICs

ELSE iF TYPE = & ,THE~i GDO;
T =
L _YINIT = LA! T.
DEFNI'[ = 0EF.'T';
NO .'i\T: GET Eni¥ °.uST7-. v DN\!STHM iMISCFH R;VTE-P, YIDTH, DEPTHZ (COLI

25;. F(l2 6a 2 n,:5 Fi6g2}> COL.45D, FI6.1), COLC57D 9 F(4[.9l COL(
h5 F i o I9 C ,J3 , 69 7 I ) )

GFT EDFIT K20_ :O.ZC-;-:,CCL[26) F(5q3D9X(4-9 sA{.LD~
iF N\= THEN DOl UP=G(
ELSE DO_UP=D0S.TR-G-'.- -_;P;
L FN G'-,-= UP S Ttq-D!,'N ST; :;:5280, O;
CS;. = 0.75 , WIDHOT'- : CETH;
V.ILUl'; = CS4 ' LENG'K-;
FLO := IP-:- SC;;
VEL =,L'.!/ Sh ;
T ',iE= I LENTH/VEL ) i/C :00o 0
(<120_E= ! 20_L0' 20 o -230-
K L -20_ Z "=K~ -20_E.;
(20_10= 12 0o90'VEL':' :O3o0 IGDEPTH-:i 0 o5)
l220_E=K220 10'2,, 30'5
K1I= K20_";I;' . o, : " Ri VY EK-20o0
;<2=(220_E4 oI 0.59; CR ;VTE;-lP-200) °;
<3 = (320_E 4 (? L04Y';.RIVTE.;P-200 0);
LA20 = PBOGD-MN / ( LO- >.O/:2 0 715'1 1t20-E f ) ;
L4 = LA20 ;: (0.02 ' R-,"V"'E;-.? 0°60);
DOS4'iT = [4o65 - O:4.ZRIVTEKiP + - O008*RCVTEHP*¢2 - Oo0OOOO00 RVTETKP*3;
DEF=DOSATR-DO_UP;
IF FGR-IT; = RFSO ';'-EN DO;
1 = FiL3* 64 zOOoO/VOLUIlE ';
Z = 3 UP (S64000 0/VOLlUE'-
A = K1 - K3 i- W9

= K 2 4 -;;

R)l)_N: LI"!;N = ;.__;'~:iT.;I(oO/(2o 7 1- {ACTIRME)) 4 ((JZ* LAA)/. A
0 oO- i0/i2 0 7°TL , :^; ;oZE));

C = TFF NT - ;Z7.;DF;J/
D = ,( / CA-B;
F = LA _N!T - .-:L>V/E;
F = io/ ( 2°7'- F,,':BIE;i
G : I :IB-A;;
H L L. I _iT - ,Z: . ,/ ,
I = LoO/( 2o71 7I;: 'Ti-E~;
J = Z/6;

DE = BEE F ( K ';.N :/; / s*
C':FN: DEF_-D'N = 'C;-",GE:,6;F 4 {G- H;ol - (JcK'

LENd j;

L-D:'N = LA - 9I/L; :- > 1oOJ ;2KoY X 7>(KCl;TliE i) 4- X/K.i;
E P.. = ;,O / C 2 0oT 7::;C ';c:iT2) );

EXP2 = lo0 / ;2 0 '7L:: 2: : .iiE) ;;
iF 1(2 = Ul TF;EN GO;
L = iK : T!,E;
' = {LA-X)/KI;



r) = X ;Y / I 9
CE _-D.!N = (L*0 -;- DF - P) ' EXPI - P; END;
ELSF D-;
DEF-_O'N = ((;L~ - ,) / :K2-K1( ' C EXPL - EXP2) + ¢{O--D/(2) :

( 1,)O-I O/( 2 7 ' 4::: K24T;' ,E ) 3 + DEF , l oO/ 207L4 6 K2*TEE ID D ; END;,
FND;

I -LFN;TH < (Oo'<5280o00 THEN DODWN = DOUPo
EL SF 3_)O',N = CDSh.7R - CEFDWN;
PRINT N:PUT SI(7.P Et OD REACHpTVPEpUPST pOiNS T- 9FLLOOJ9CS4ATt-EpKQ. I((2?DO_;P

COlL( 71?F.67 13,CO-' , 5 8  FC6} pCOL(6a)*Fa5929COL;791)Fi5939 COLgO9
F:593)Ct.3L(Li010; ,F(4>; COLI1L3) ,F ,));

QJ P=FLor;
BOODU = L _O'N / 0o02 r R:VTE.P 4- 06B);
DSF-U, = DOS4R - COG_GCWN
, 20_UP=K . 2C _i

GO TO ,k0D;
END;

/r',:'.:,',,-:; ;iNDUSRV. DISCHARGENG -ASTE iNTO RVER --

FLSE :F TYPF= rDl T;-:.N DG;
TD'DiS:GET EGITflUST;.:>:STN Sz _ RYVTEP 2sWDTH DEPTHI COL25 DFf62D

sCOLC3(5) FF(72;7C OL{5 sF{6s2 } CfL(57) 9Ft41 COGL(65) gFf6 19
COL (75,.F6( 5 6

CFT F -) iT (1);5 . : 120_-0 v I N'TE MP Z ILCH~ tCOL ( 25) F( 6 19 9 CCL 379 sF1 1 D
COL ( 4 6 ; 9 F l 5 9 ": 5 C GL ( 57 )F f4 1 3 X 6 v9 D 9 A 6 1 9I)s

IF. N'= TfHEN DO-_UP=DO;
ELSE DI_UP=DOSATR-OE,--UP;
O)?SATW = Zo6-5 - 0,41i:NTKP .O0 084INTEMP4*2 - O.000oO84NTENMP*3;
L :NGTHK UJPST '-],'NST;-; :::5280. 0;
CSa = 0 °75 ', v;iTF: DEPTH;
VOLU'iE = CSA , LENUIGT
FL OIW=Q lUP.;-Dt S_- :*lo5z45s
VFL =F LOW'C S/A
T f-tE=( LENGT,'VEL )/8-00 ° 0;.
(,120-E=K 20-10 ::2.0 03;

2 )_ -ui X= t l 0_UP:_U-; , ,20_E:( D l S_ - 45 ) ) ) / FLOl-

4?20-_3=; 12o~O' :VFL: ::::OO5 /I,'GEH*Tt 10o5D;
K22_ -E=K22C-lO-:2 303:
( L=K1 20_,; 0i I 1. Io 0'. 7 I4 2 , VTEVP-20 o 0

;K2=K220-_E< [o O ;.59~': R . V.;' ;.,P-20 E O, 9
<3 = K-320-E : ZoO47,::': VTE4P-20oO}.,
LAiN=, ODS/(;.o-LoO/;20o*7'4'¥{5¢K20 ED)

L420 = ('(SD _UP::_UP) , (LAIN * DIS _)I / FLOW;
L. = LA20 " (0,O2 ; RiVTE;LP cG 0o60)9

nFF _ N=D3S';- !:-D";
DOSiTR = 14.65 - Oo4l':R.VTEP 4- OoO08CRI'VTEMP*2 - O.OOO000oRIVTE.P.3;
DEF=(U(DCSATR-DO-UP'4--_UP-:',(DEF-_N*DIS_-)/FLOW;
IF F"ORi(T ) = CErES THEN ;;0 ;
lJ = FL .. ' 86 ,o000/VCLU.;E);
Z = OUP 4 iS6Z.00oO/VOLU;I.E);
A = Ki 4- K3 4 ':;



B = I<2 W;
BOO_ .Y: L DON = =A.N.IT:,iO/ .IO(27?I'":A*TIME)) + aZLAD/AD A

(iC n- ./,: 20 7i:::A*':;- ; 1'
C = DEF INIT - (Z;DEF;/9;
O = x:_ / (A,-R);
E = L iNIiT - (ZELi)/B;
F = l 2oi/2o 7i ,S' ;i;2 ',;

G = Ki/ B-:;i
= La-TN:T - r Z*LA-)i7;

J = Z/B;
K = rEF + (KI'.LA)/A~
DEF _[O: DEFD-;N - CC (C+DEE))F + (G-H);+ + J*K);
FND;
tLSE DO;
I Dl WN = (LA - '/X.J ,' L 2O/0(20 71 {(XlTI[MED)D + X/KLi
FXPL = : O / [2 0 7 i `7':;:T-,EE;
E"P2 = tO ,/ !2o 07:,'X:(2,.: ;9;
IF K2 = Ki THEN DG;
L = KI " TI'-;
] = iL4-X.'/;(~;
P = X - /  '
DEF DO'N = ;:-O + DCF + PD EXPi - 2; END;
ELSE o;0
DEFDWN = (,' LA - X) / ;I 2-K1)) $ EXP1 - EXP2) + (X+.VD/K2}'

{loO-i0 O/; 2 071:;K2' uE;} OEF'( 0oO/l2o71*6*t-K2*T tED)D; END;

-ND;
IF LENGTH < (O15?28oo0) T.-,EN DO_DOWN = DO_UP;
ELSE 0l _OWN = DGSi,TR - 0GE,_DWN;
PRIT_ I!D:°UT SX(.P FDIT(RE E-H 0 TYPE9 UPST-iM9 DW!NSTNi9 FLOW 9 CSIo Et;^,EK (29

OOPvDOOWN ,CO{2)~ 9 At3)COL(g9L)A~3),COL(17h)F(69 2)9 COL(289F(69 2)v

C0L(37)iF(b69l1;COL r 58 * F(b 6 )DCOL(6683F(59 2,7COL(79) Fp593D9COL{903)

F:(5 9 3)s C9OL(1Or 9vFt49i 1COL(113' 9 F(4 9 1)D;
OUP=FLlWs.
ROD UP = L DWN / E0o02 * R.VTEMP 4 0,6)i
OFF_UP = DOSATR - GO_DOWN
<(20 IJP=Ki20_ iX;
GO TO IOD;
END;

/; : ;:<~;,:::,:<I: ;iDUSTRV !'i T'rDRA!,', NG WATER FROi RIVER .c:~.~;'r;:so

ELSE IF TYPE=v '-: ' ,'.; 7 DCG,
IN qD_TH")R.. L:GE ECT ( U.J S -;-;J.G;-;iWSTM .-JTHDR 9RIVTE'QLP9 WIDTH 9 OEPTH} COL(25 ,

F6pC2vCnl03535 9 EC22jCOLC45) sF(6921COL(57)sFC49s1COL(65),F(6 9 I),
COL 75 9F C65 )>

vF N=i THEN D, U?=JUO
ELSE 0: UP=DOSATR-DEFUP9
LENGT;= : UPSTN-GDt';?'S;-]; ~:52G0 O;
CS4 = 0.75 ' U.DTHF DEPTF;
VtLUVLE = CSA 8: L7:NGT;':
FLfLW=OQ_ SUP+-THDR,545 5

VEL=FLOW /CSA;



- :.:E EG--:- 2 c C'CO C;
;i20 _,,-=.i2.. _ L-
; 220 - ,=; 2.. , -. , H i.5 9
!'220_E = X22010 2oLC.3
;; = ;( 2 0_.-;: i';;[ , o"O 6; ;::;;:: : V,' F :;4 P-2 0 o0 9
.2=:;2 20E: oO 0 15 R;.- 20
K3 = ;X320_E : o.0'7 :::;::C V,' ';';.-2 0 oO,
LA20 = SCD-UP : .FEC ..:C ';
LA = LA20( :002 :, ' "f f-' .- 0 (o60);
OOS;,-R = :'.-65 - O o.:VT0; 'p OoOO8,RIVTEMPC2 - 0o00oo0ORlVTEKP*3~;
DEF=DOS;T 7R-O-_U?',

,- FS. :-T = ;,-:Cs ;'-'-N C-9

!- . i. 0 / - 9

= Q_UP C36: 0-GoO/VOLU, E9i
,-= ' ,(3 <. ,

S3O_"v:: _,'.:': = ';,_:,: ;/i2o713O--,a;;Tl'E)D9D + ~Z$IL/9/A9r o
. i o O- Oi0/ . 2 y :.o:~ Ao'-' : .... ,i;

C = C N - ;; :C:F;/3;

b = :' / ;A-S;;
E = L- INIT -IZ"' "' I
F = oO/' 2 0 7L' " C .. ;; i
oG = :/CS- ;;
H = LA a IT - Z;TA','A
I = : .O/ 2o7;Lu:(, Ti'-E:)~;
J = Z/3;
K = GE2- - ;' /A;
DEF t': OEF-DWN - (C4:E9 ;'F * (GH',D, e {J;KD;
Ei:D ;
ELSE 00;
L _D',: = ;L&A - ,;/i _ C2.7-9T; : ',"O/C2071 iilT - Ei) + K/KI;
E'(P; = .. O / i2(o- : 7 .-. 9 .. ;Ei
F-P2 = io0 / ,:2 0o7: 0 ; 2 -; E))

F X2 = X: 'PEN LO ;
L = 7' TK ' - °

O = i.' / ;I 1 9

DEF D:IN L'0O - D 2EF : XP[ - P; END;
EL- C CO;

'E- 'c': = L - / ; 2-::l , EXPI - EXP2 :- ;VlD /K29 ;

I o0-'- o0/ 2,07 ":--; ; : ;-., i =t + oGEF: - {oO/o 2.7 ** K* 71 '24 E D sD; END;

END;
I F Li:GT -: < O ., :' 2CC0 C; G -.:EN CO DW = DC-UP;
ELS E DG_:j':;< = C3S;,R - CEF;_C'.:;
PRN; i'2_I'!:9U, S:; r ED' ',':. Ar<CI-IsTYPUPST;'R ,Dt4NS vFFLC~,sCS AsT" MEvoi~'tf'2

Cf(il{7;sF{v tvCO-(58; 9.-Cv) CCOLt(8vFi75¢2DCOL¢79) 5F[5v3iCOL¢90;9

F;(¢'S,3 C[G L;.0O3vFiz.-, iCCLi12':)*F z 1IJ);
PR, =F LCt' ;
6D-_UP = L_D:..;: / 0O02 4 RIVTENP - 0.o6);
nEF-UP = DCOSA YR - DO_D':N;
;. .20 UP=;20-'
GD T ADGD;



/:v'44>'-+'* '\;4?;:< -7 IYGUS7R\' !1THDRA4WNG , lU:AR FROM R!VER :;uic;$4s¢
/:' REf4CH IN H'?_C_-; AN :NDUSTRY9S tUITHDRAAOAL AND DISCHARGE POEN7TS 4-o/
/f.~: .-:-;e ARE CLOJ ENOUGH TO BE CONSIDERED AS ONE POIN¥T .i:::~r@c4¢

ELSE IF TYPE-:.;:C9 TH EN GG;
IND _v:THDR_4 C(lN: GET ED'F,'UPSTFDt;!NSTiiJTlWHDRvZILCHD(COL(25DF(6s2

COL(35;1F:iv23sCOLi(456j s62) 9 Xi2v) 9 A~iv
IF N=l TKEN DO_UP-=DO;
FLSE DrO UP=DOSiTR-DEF _UP;
,L 9!'=O L;PY: U'iHDr G'-= o 5z95};
DOr) -/N=nDO_UP;
L£20 = ,1")_UP 8 fFLO!!/Q_ UUP
PRINT_I[JC: PUT S:(;'2 2CT0;REACH9TYPEvUPSTrFDtDNSTmFFLOtD O_-UPBO-_DWN

iCOL(2I;)s4(33CO' ,9;>A n'3DCOL 917) Fi69 2)CvCOL128) F(6s823oCOL37D9
F;6s;C)L I li5F( 1) 9 C0L( li3 ) 9Fi4f 1339

O _JP=FLOWn;
Sr)D UP = LA20O
DEF_JP=DEF-DOWN;
Ki20 UP=K 120_- i X;
GO TO ADD;
LAST:END START;



APPENDIX II

DATA FOR EACH REACH

FOR

JUNE 1972--SEPTEMBER 1972
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TABLE XI

CLASSIFICATION, RIVER MILE LOCATION, AND
CHANNEL DIMENSIONS OF WARRIOR RIVER REACHES

Reach Classi- Upstream Downstream Average Average
No. fication River Mile River Mile Width Depth

(ft.) (ft.)

1A SD 385.00 382.00 1125 54.7
2A SD 382.00 367.50 1270 71.7
3A SDH 367.50 366.00 1250 83.7
4A R 366.00 365.00 1440 85.7
5A N 365.40 361.50 1140 32.5
6A SDH 361.50 347.50 1240 60.5
7A R 347.50 346.90 1500 76.5
OA N 346.90 346.30 970 16.9
9A SD 346.30 345.70 500 22.9
10A IWC 345.70 345.70 -- - -

10B ID 345.70 345.20 520 19.9
10C SDH 345.20 344.40 520 19.9
11A IWC 344.40 344.40 --
liB ID 344.40 344.39 470 20.4
i1C ID 344.39 343.70 470 20.4
12A SDH 343.70 343.50 500 19.9
13A ID 343.50 343.00 530 19.4
14A IW 343.00 342.50 640 18.9
15A ID 342.50 341.60 500 19.9
16A SDH 341.60 338.41 590 34.9
17A ID 338.41 338.39 470 49.9
18A R 338.39 338.10 750 51.4
!9A N 338.10 337.00 510 25.0
20A IW 337.00 336.70 410 25.3
2L ID 336.70 335.00 350 25.5



TABLE XII

INPUT DATA FOR WARRIOR RIVER REACHES

River
Input Tempera-

Reach
No. Month

1A June
July
August
September

2A June
July
August
September

3A June
July
August
September

4A June
July
August
September

Flow
(cE: )

1895.0
2150.0
1615.0
1975.0

65.0
100.0
100.0
125.0

10.0
10.0
15.0
10.0

1970.0
2260.0
1730.0
2110.0

ture
(0 C)

27.0
27.9
30.0
28.0

27.7
29.0
30.0
28.5

28.5
28.0
29.1
28.9

28.5
27.5
29.1
28.9

BOD 5
Input

(ppm)

2.5
3.2
1.0
3.0

2.5
3.5
3.5
2.5

D. O.
Input

(ppm)

6.0
6.7
6.6
5.9

7.0
5.2
7.1
6.5

8.0
8.0
8.0
8.0

k1 20 °C Tem[pura- BOD5  D. 0.
Input ture of of

(base 10) Input River River
(days- 1) (°C) (ppm) (ppm)

27.0
27.9
30.0
28.0

25.6
28.9
28.9
25.0

20.0
22.2
22.8
22.8

0.060
0.060
0.060
0.060

0.060
0.060
0.060
0.060

1.0
1.5
1.5
1.5

3.7
3.4
5.1
3.0

k1 20 °C
of River
(base 10)

(days- 1)

0.060
0.060
0.060
0.060 0o



TABLE XII (Continued)

kl 20 °C
BOD5  D. O. Input
Input Input (base 10)
(ppm) (ppm) (days- 1)

Tempera- BOD5  D. O. k 1 20 °C

ture of of of River
Input River River (base 10)

(oc) (pp:.) (pp::) (days'- )

5A June
July
August
September

6A June
July
August
September

7A June
July
August
September

8A June
July
August
September

9A June
July
August
September

Reach
No. Month

Input
Flow

(cfs)

River
Tempcra-

ture

(°C)

5.0
5.0
4.6
4.8

0.055
0.055
0.055
0.055

0.0
0.0
0.0
0.0

15.0
25.0
10.0
15.0

1880.0
2270.0
1730.0
2040.0

0.0
0.0
0.0
0.0

25.0
35.0
25.0
15.0

22.2
23.3
26.7
26.7

27.3
26.2
28.2
27.8

26.7
26.0
29.0
28.3

28.3
27.5
28.9
28.0

25.7
26.7
27.2
27.2

25.7
26.7
27.2
27.2

2.7
3.5
4.0
4.0

4.6
4.3
3.9
4.4

0.095
0.095
0.095
0.095

0.065
0.065
0.065
0.065

2.0
2.5
2.5
2.6

8.0
8.0
8.0
9.4

0.060
0.060
0.060
0.060

25.6
28.9
28.9
25.6



TABLE XII (Continued)

Rive a:
Input Tempica-
Flow ture
(cfs) (°C)

kl 20 °C Tempera--

BOD5  D. O. Input
Input Input (base 10)

(ppm) (ppm) (days-l)

ture
Input
(OC)

BOD5  D. O.
of of

River River

(ppm) (ppm) (days-l)

10A June
July
August
September

10B June
July
August
September

10C June
July
August
September

11A June
July
August
September

liB June
July
August
September

Reach
No. Month

- 0.43
- 0.43

0.43
- 0.43

kl 20 °C

of River
(base 10)

0.40
0.43
0.43
0.42

0.20
0.20
0.20
0.20

1.12
1.12
1.12
1.12

0.21
0.21
0.21
0.21

26.5
27.3
27.8
27.2

26.5
27.3
27.8
27.2

26.5
27.3
27.8
27.2

610.0
450.0
280.0
410.0

1550.0
1550.0
1550.0
1550.0

5.0
5.0
5.0
5.0

0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0

3.0
3.0
3.0
3.0

0.005
0.005
0.005
0.005

0.025
0.025
0.025
0.025

0.025
0.025
0.025
0.025

33.0
33.0
33.0
33.0

33.0
33.0
33.0
33.0

34.4
34.4
34.4
34.4



TABLE XII (Continued)

River
Input Tempera-,
Flow
(cfs)

ture
(°C)

BOD5
Input
(ppm)

D. 0.
Input
(ppm)

kl 20 °C
Input

(base 10)
(dayvs-l)

Tempera- BOD 5

ture of
Innut River

(ppm)

D. 0. kl 20 °C
of of River

River (base 10)
(ppm) ( ys- 1)

liC June
July
August.
September

12A June
July
August
September

13A June
July
August
September

14A June
July
August
September

15A June
July
August
September

(°C)

33,0
33.0
34.0
33.0

25.0
28.9
27.8
24.4

24.0
24.0
24.0
24.0

0.70
0.80
0.78
0.72

70.0
110.0
110.0
140.0

3.50
3.50
3.50
3.50

- 18.00
- 18.00
- 18.00
- 18.00

12.00
12.00
12.00
12.00

Reach
No. Month

26.5
27.3
27.8
27.2

26.5
28.0
27.8
27.2

26.5
28.0
27.8
27.2

26.5
28.0
27.8
27.2

27.0
27.5
27.8
27.2

35.0
35.0
35.0
35.0

84.0
52.0
54.0
46.0

2.2
2.2
2.2
2.2

100.0
100.0
100.0
100.0

0.0
0.0
0.0
0. 4

7.5
7.0
7.0
7.5

5.0
5.0
5.0
5.0

0.0
0.0
0.'0
0.0

0.085
0.085
0.085
0.085

0.002
0.002
0.002
0.002

0.135
0.135
0.135
0.135

co
Ln



TABLE XII (Continued)

Reach
No. Month

16A June
July
August
September

17A June
July
August
September

18A June
July
August
September

19A June
July
August
September

20A June
July
August
September

Input
Flow
(cfs)

0.6
0.4
0.5
0.6

0.32
0.50
0.38
0.50

2150.0
2630.0
2000.0
2320.0

0.0
0.0
0.0
0.0

- 0.40
- 0.40
- 0.40
- 0.40

River
Tempera-

ture

(°C)

27.0
27.5
27.8
27.2

26.7
28.5
27.8
27.2

26.7
28.5
27.8
27.2

26.7
28.5
2'7.8
27.8

26.7
28.5
27.8
27.8

BOD5
Input
(ppm)

58.0
40.0
28.0
60.0

Do. 0.
Input

(ppm)

4.0
4.0
4.0
4.0

7.0
8.0
9.0
7.0

20 °C Tempera-
Input ture

(base 10) Input
(days- 1) (°C)

21.0
23.0
22.0
21.0

27.0
28.0
28.0
27.0

0.100
0.100
0.100
0.100

2.5
1.5
1.0
2.0

BOD5
of

River

(ppm)

Do O.

of
River

(ppm)

6.6
5.7
5.4
6.7

kl 20 °C
of River
(base 10)
(days - 1)

0.040
0.040
0.040
0.040

0.020
0.020
0.020
0.020

co0
C'



TABLE XII (Continued)

River
Input Tc .pera-

Month

21A June
July
August
September

Flow
(cls)

Lure
(OC)

0.46 26.7
0.46 28.5
0.46 27.8
0.46 27.8

kl 20 °C Tempera--
BOD5  D. O. Input
Input Input (base 10)
(ppm) (ppm) (days-1)

22.0
22.0
27.0
27.0

2.9
2.9
3.0
3.0

0.025
0.025
0.025
0.025

ture
Input

35.0
35.0
35.0
35.035.0

BOD5  D. 0.
of of

River River

(ppm) (ppm)

Reach
No.

k 1 20 °C
of River
(base 10)
(d.ys-l)

co



88

APPENDIX III

DETAILED TAPS OF THE SECTION OF

THE WARRIOR RIVER USED IN THE

MODELING STUDY
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